
January 2023                            1 | P a g e  

 

 

Distributed and Online Maintenance of Graphical Models in 

Apache Flink 

 

 

 

 

 

 

Copyright © 2022 Nikolaos Tzimos 

All rights reserved.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



January 2023                            2 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



January 2023                            3 | P a g e  

 

Abstract 

 

With the growing need for large scale data analysis, distributed machine learning has grown 

importance in recent years. The raw data is described by a large number of interrelated 

variables and an important task is to describe the joint probability distribution over these 

variables, allowing simultaneous interferences and predictions to be made. Direct modeling of 

the joint probability distribution of all these variables may be infeasible, since the complexity 

of such a model grows exponentially with the number of variables. We focus on Bayesian 

Networks, the father of graphical models, and present a different communication-efficient 

approach using the well-known method of Functional Geometric Monitoring, for continuous 

learning and maintenance of Bayesian Networks in a distributed streaming environment. 

Finally, the experimental results confirmed the functionality of the proposed method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



January 2023                            4 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



January 2023                            5 | P a g e  

 

Table of Contents 
Introduction .............................................................................................................................. 9 

1.1 Objective ................................................................................................................... 9 

1.2 Thesis Outline ................................................................................................................ 10 

Theoretical Background .......................................................................................................... 11 

2.1 Notation ........................................................................................................................ 11 

2.2 Bayesian Networks ....................................................................................................... 14 

2.2.1 Introduction to Bayesian Networks ...................................................................... 14 

2.2.2 Bayesian Network Semantics ................................................................................ 18 

2.2.3 Student Bayesian Network .................................................................................... 21 

2.3 Naïve Bayes Classifiers ................................................................................................. 22 

2.3.1 Introduction to Naïve Bayes Classifiers ................................................................ 22 

2.3.2 Naïve Bayes Classifiers Semantics ......................................................................... 22 

2.4 Forward Sampling ......................................................................................................... 26 

2.5 Learning parameters ..................................................................................................... 30 

2.5.1 Maximum Likelihood Estimation (MLE) ................................................................ 30 

2.6 Laplace Smoothing ........................................................................................................ 33 

2.7 Distributed Continuous Model ..................................................................................... 35 

Problem statement ................................................................................................................. 38 

3.1 Problem definition ........................................................................................................ 38 

3.2 The general approach ................................................................................................... 40 

Problem analysis ..................................................................................................................... 43 

4.1 A first approach ............................................................................................................ 43 

4.1.1 Approximated Distributed counters ..................................................................... 44 

4.1.1.1 Randomized Counters .................................................................................... 45 

4.1.1.2 Deterministic Counters ................................................................................... 48 

4.1.1.3 Comparison between RANDOMIZED and DETERMINISTIC ........................... 49 

4.1.2 Analysis of BASELINE, UNIFORM and ΝΟΝ_UNIFORM ........................................ 51 

4.1.2.1 Dummy Father ................................................................................................ 54 

4.1.2.2 Comparison among BASELINE, UNIFORM, NON_UNIFORM algorithms ...... 55 

4.1.3 Communication cost of Naïve Bayes Classifier ..................................................... 55 

4.2 A second approach ....................................................................................................... 57 

4.2.1 Functional Geometric Monitoring (FGM) ............................................................. 57 

Design and Implementation of the system ............................................................................ 60 

5.1 Apache Flink .................................................................................................................. 60 



January 2023                            6 | P a g e  

 

5.2 Apache Kafka ................................................................................................................ 61 

5.3 System Architecture ..................................................................................................... 62 

Experimental evaluation ........................................................................................................ 65 

6.1 Datasets ........................................................................................................................ 65 

6.2 Performance metrics ..................................................................................................... 66 

6.3 Experimental Results .................................................................................................... 67 

6.3.1 Communication cost related to the number of training instances ...................... 67 

6.3.2 Communication cost related to the approximation factor ε ................................ 71 

6.3.3 Communication cost related to the number of workers ...................................... 73 

6.3.4 Scalability ............................................................................................................... 73 

6.3.5 Dummy Father ....................................................................................................... 79 

Conclusions ............................................................................................................................. 80 

7.1 Conclusions ................................................................................................................... 80 

7.2 Future Work .................................................................................................................. 80 

Appendix ................................................................................................................................. 81 

Bibliography ............................................................................................................................ 93 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



January 2023                            7 | P a g e  

 

List of Figures 
Figure 1: Directed Acyclic Graph (DAG) of the Student Bayesian network ............................. 12 

Figure 2: Probability mass function(pmf) from a binary-valued random variable 𝑋𝑖 ............. 16 

Figure 3: Part of the graph from the Student Bayesian Network............................................ 17 

Figure 4: Tabular CPD of Grade node ...................................................................................... 19 

Figure 5: Equal width binning .................................................................................................. 20 

Figure 6: Student Bayesian Network accompanied with CPDs ............................................... 21 

Figure 7: Naïve Bayes Classifier ............................................................................................... 23 

Figure 8: Naïve Bayes Classifier for spam filtering .................................................................. 25 

Figure 9: Topological ordering of Student Bayesian Network................................................. 27 

Figure 10: Sampling of a multinomial distribution .................................................................. 28 

Figure 11: Distributed Continuous Model ............................................................................... 36 

Figure 12:  𝑛𝑅𝐶 and 𝑛𝐷𝐶 varying the number of sites 𝑘 ........................................................ 50 

Figure 13: Dummy Father ........................................................................................................ 54 

Figure 14: Apache Flink ........................................................................................................... 60 

Figure 15: Feedback loop ........................................................................................................ 61 

Figure 16: Apache Kafka .......................................................................................................... 61 

Figure 17: System Architecture ............................................................................................... 62 

Figure 18: Hashing ................................................................................................................... 64 

Figure 19:  Error to GT related to the training instances for both approaches, for the HEPAR II 

dataset ..................................................................................................................................... 68 

Figure 20: Error to EXACTMLE related to the number of training instances for both 

approaches for the HEPAR II dataset ...................................................................................... 68 

Figure 21: Communication cost related to the number of training instances for both 

approaches from the HEPAR II dataset ................................................................................... 69 

Figure 22: Communication cost related to the number of training instances for both 

approaches from the HEPAR II dataset -Best results .............................................................. 70 

Figure 23: Communication cost related to the approximation factor ε, for the HEPAR II 

dataset and UNIFORM algorithm ............................................................................................ 71 

Figure 24: Communication cost related to the approximation factor ε for both approaches, 

for the HEPAR II dataset and UNIFORM algorithm ................................................................. 72 

Figure 25: Error to GT related to the approximation factor ε for both approaches, for the 

HEPAR II dataset and UNIFORM algorithm ............................................................................. 72 

Figure 26:  Communication cost related to the number of workers sites for both approaches, 

from the HEPAR II dataset and UNIFORM algorithm .............................................................. 73 

Figure 27: Throughput(events/sec) related to the number of sites for both approaches, for 

the HEPAR II dataset ................................................................................................................ 74 

Figure 28: Throughput(events/sec) related to the number of sites for the first approach for 

the HEPAR II dataset HEPAR II, after the initial state .............................................................. 75 

Figure 29: Throughput(events/sec) related to the number of sites for both approaches, for 

the HEPAR II dataset -Best results ........................................................................................... 76 

Figure 30: Throughput(events/sec) related to the number of parallelism for both approaches 

for the HEPAR II dataset .......................................................................................................... 76 

Figure 31: Throughput(events/sec) related to the number of parallelism for the first 

approach for the HEPAR II dataset, after the initial state ....................................................... 77 



January 2023                            8 | P a g e  

 

Figure 32: Throughput(events/sec) related to the number of parallelism for both approaches 

for the HEPAR II dataset- Best results ..................................................................................... 78 

Figure 33: Communication cost in conjunction with the Dummy Father (DF) method for 

HEPAR II, ALARM datasets ....................................................................................................... 79 

Figure 34: Mean error to GT related to the number of training instances for both approaches 

for the HEPAR II dataset .......................................................................................................... 81 

Figure 35: Communication cost related to the number of training instances for LINK, ALARM 

datasets ................................................................................................................................... 82 

Figure 36: Communication cost related to the approximation factor ε for both approaches 

for the HEPAR II dataset .......................................................................................................... 83 

Figure 37: Communication cost related to the number of sites for both approaches for the 

HEPAR II dataset ...................................................................................................................... 84 

Figure 38: Runtime(sec) related to the number of sites for both approaches for the HEPAR II 

dataset ..................................................................................................................................... 84 

Figure 39: Runtime(sec) related to the number of sites for the first approach for the HEPAR II 

dataset, after the initial state .................................................................................................. 85 

Figure 40: Runtime(sec) related to the number of sites for both approaches for the HEPAR II 

dataset - Best results ............................................................................................................... 85 

Figure 41: Runtime(sec) related to the number of sites for both approaches for the HEPAR II 

dataset ..................................................................................................................................... 86 

Figure 42: Runtime(sec) related to the number of sites for the first approach for the HEPAR II 

dataset, after the initial state .................................................................................................. 86 

Figure 43: Runtime(sec) related to the number of sites for both approaches for the HEPAR II 

dataset - Best results ............................................................................................................... 87 

Figure 44: Project Structure .................................................................................................... 88 

 

List of Tables 
Table 1: Notation summary ..................................................................................................... 45 

Table 2: Space and communication complexity for each counter .......................................... 49 

Table 3: Approximation factor and Communication Cost for algorithms ............................... 54 

Table 4: Bayesian Networks .................................................................................................... 66 

 

 

 

 

 

 

 

 



January 2023                            9 | P a g e  

 

Chapter 1: 

Introduction 
1.1  Objective 
 

The present thesis proposes a system capable of construction and maintenance of the well-

known graphic model, namely Bayesian Networks, on data referring to large volumes of data, 

that are evolving, distributed, and multidimensional, while using minimal communication 

cost. The purpose of the system is the maintenance and continuous parameter learning using 

communication-efficient algorithms on distributed continuous model based on the Maximum 

Likelihood Estimation (MLE) algorithm. 

The first approach is based on using approximate distributed counters with the combinations 

of the algorithms BASELINE, UNIFORM, and NON_UNIFORM. These algorithms propose how 

we can define the approximation factor ε on each counter, which aims to provide appropriate 

error guarantees of the joint probability distribution of MLE. The system supports two types 

of fundamental approximate distributed counters, the first refers to the RANDOMIZED 

counters and the second one refers to the DETERMINISTIC counters. This approach leads to 

an exponential reduction in communication cost compared to the conservative approach of 

EXACTMLE, which uses EXACT counters. 

Moreover, the system supports the maintenance of a special-case of Bayesian Networks, the 

Naïve-Bayes Classifiers (NBC). The implementation of the system takes part in Apache Flink 

and Apache Kafka. 

The present thesis except for the first approach, proposes an alternative approach to the 

maintenance and continuous parameter learning of Bayesian Networks. In particular, this 

approach uses the well-known method of Functional Geometric Monitoring in combination 

with the BASELINE and UNIFORM algorithms, which divide with the appropriate way the 

available error budget. The idea behind the use of the Functional Geometric Monitoring 

method is now each counter we do not need to treat each individual, but the approximate 

distributed counters can be treated as frequency vectors This approach leads to the reduction 

of communication cost up to one order of magnitude to the previous approach and up to two 

orders of magnitude to EXACTMLE. Finally, the experimental evaluation confirms that the 

proposed approach can handle satisfyingly large data volumes by providing the appropriate 

scaling. 

 The present thesis integrates the widely known method of Laplace Smoothing for handling 

the zero parameters and proposes the method of Dummy Father (DF) in combination with the 

NON_UNIFORM algorithm. The experimental evaluation confirms that this leads to a 50% 

reduction in communication cost. 

 

 

 



January 2023                            10 | P a g e  

 

1.2 Thesis Outline 
 

The thesis is organized as follows: Chapter 2 provides the necessary theoretical background, 

covering crucial concepts related to Bayesian Networks and Naïve Bayes Classifiers. Each 

concept is illustrated with a relevant example. Additionally, a detailed analysis is conducted 

for the Forward Sampling Algorithm and the method of Laplace Smoothing. Furthermore, the 

chapter delves into the Maximum Likelihood Estimate algorithms used for parameter learning 

and introduces the Distributed Continuous Model, the model employed in this thesis. The 

analysis within Chapter 2 offers a comprehensive exploration of these topics, providing 

valuable insights into their implementation and implications. 

In Chapter 3, it contains the definition of the problem and the general approach that is used 

for both approaches. In Chapter 4, it contains the analysis of the problem, particularly the 

analysis of the first approach considering the approximate distributed counters, which in this 

case, we treat as individual entities. Finally, it contains the analysis of the second approach, 

which employs Functional Geometric Monitoring (FGM). In Chapter 5, it contains the design 

and implementation of the proposed system. In Chapter 6, it contains the experimental 

evaluation of each approach from different perspectives. Finally, in Chapter 7, it contains the 

conclusions, future work, and extensions of the system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



January 2023                            11 | P a g e  

 

Chapter 2: 

Theoretical Background 
 

2.1 Notation 
 

Throughout this thesis, the notations used are primarily based on [1]. 

Random variables are denoted using capital Latin letters 𝑋, 𝑌, 𝑍 while their corresponding 

values are represented using the lowercase Latin letters 𝑥, 𝑦, 𝑧, respectively. Moreover, the 

notation 𝑉𝑎𝑙(𝑋) denotes the set of values of random variable 𝛸. When referring to   

categorical (discrete) random variables, we use the notation  𝑥1, … , 𝑥𝑘 to enumerate the 

values of random variable 𝛸, according to the fact that the continuous random variable 𝑋 

contains k different values. Additionally, 𝑿, 𝒀, 𝒁 represent sets of random variables while 

𝒙, 𝒚, 𝒛 contain the values of the set from random variables, accordingly, we can define 𝑉𝑎𝑙(𝑿) 

so in this case we refer to the set of values from the set of random variables 𝑿. 

Moreover, the function | ∙ | denotes the cardinality of the corresponding function-relation 

expect when defined differently. For instance, |𝑉𝑎𝑙(𝑋)| corresponds to the number of values 

of the random variable 𝑋 or equivalently the number of values contained in the set of values 

of the random variable 𝑋. In most cases, we use the 𝑃(𝑥) for 𝑃(𝑋 = 𝑥), given the fact that 

the 𝑥 refers to the values of the random variable 𝑋. Finally, we consider 𝑃((𝑋 = 𝑥) ∩

(𝑌 = 𝑦)) to be equivalent to 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦) or 𝑃(𝑥, 𝑦) or P(𝑋, 𝑌). 

Suppose we have a set of random variables 𝑿 = {𝑋1, … , 𝑋𝑛}. The joint probability distribution 

over the set 𝜲 is denoted as 𝑃(𝑋1, … , 𝑋𝑛) 𝑜𝑟 𝑃(𝑿) while the distribution 𝑃(𝑋𝑖) refers to the 

marginal distribution of the random variable 𝑋𝑖. When referring to a conditional probability 

distribution (CPDs), we use the notation 𝑃(𝑋 | 𝑌) where 𝑋, 𝑌 represent any random variable. 

Finally, we use the 𝜉 to denote a full-assignment of random variables from any set of random 

variables 𝜲. 

The two most fundamental rules that are used and are worth mentioning are the Chain Rule 

[1] and Bayes Rule [2]. Both rules are based on a widely known method of conditional 

probability. We define the conditional probability below.  

Suppose 𝛼, 𝛽 refers to any two events. The conditional probability of 𝛽 given 𝛼 is defined as: 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∶  𝑃(𝛽 | 𝛼) =
𝑃(𝑎 ∩ 𝛽)

𝑃(𝛼)
 

The conditional probability is defined only when the denominator is greater than zero i.e., 

𝑃(𝛼) > 0. 

The first rule, the Chain Rule, states that if 𝛼1, … , 𝛼𝜅 is a sequence of events, then: 

𝐶ℎ𝑎𝑖𝑛 𝑅𝑢𝑙𝑒 ∶ 𝑃(𝑎1 ∩ … ∩ 𝑎𝑘) = 𝑃(𝑎1) ∙ 𝑃(𝑎2|𝑎1) ⋯ 𝑃(𝑎𝑘  | 𝑎1 ∩ … ∩ 𝑎𝑘−1)  

 



January 2023                            12 | P a g e  

 

If the sequence of events consists of independent events, meaning 𝑃(𝑎𝑖 ∩ 𝑎𝑗) = 𝑃(𝑎𝑖) ∙

𝑃(𝑎𝑗) for each 𝑖, 𝑗 ∈ {1, … , 𝜅}, then: 

𝑃(𝑎1 ∩ … ∩ 𝑎𝑘) = 𝑃(𝑎1) ∙ 𝑃(𝑎2) ⋯ 𝑃(𝛼𝜅)  

The second rule, Bayes’ Rule, is an immediate consequence of the definition of conditional 

probability, if 𝛼, 𝛽 represents any two events, then: 

𝐵𝑎𝑦𝑒𝑠′ 𝑅𝑢𝑙𝑒 ∶ 𝑃(𝛼 | 𝛽 ) =
𝑃( 𝛽 | 𝛼) ∙ 𝑃(𝑎)

𝑃(𝛽)
 

Graphs 

 

 

 

 

 

 

 

 

 

 

Figure 1: Directed Acyclic Graph (DAG) of the Student Bayesian network 

 

This section contains the most fundamental notations used throughout this thesis regarding 

graphs. More details are represented in [1, Ch. 2]. 

The most primary data structure used is this thesis is the well-known structure of the graph. 

A graph consists of a set of nodes 𝒱 and a set of edges ℰ. Hereafter, we will use the notation 

𝒢(𝒱, ℰ) or  𝒢(𝒳, ℰ) to denote a graph 𝒢, where the 𝒱 = {𝑉1 , … , 𝑉𝑛} represents the set of 

nodes and the ℰ = {𝐸1, … , 𝐸𝑛} denotes the set of edges, respectively. 

In particular, we focus on Directed Acyclic Graph (DAG). In this case each pair of nodes 𝑉𝑖, 𝑉𝑗  ∈

𝒱 is exclusively connected by a directed edge 𝑉𝑖 → 𝑉𝑗. The set of edges ℰ contains all the 

possible pairs of connected nodes. Additionally, the acyclic property of the graph ensures that 

there is no directed path 𝑉1, … , 𝑉𝑘 where 𝑉1 =  𝑉𝑘 which would represent a loop. 

Given a directed acyclic graph  𝒢(𝒳, ℰ), for any edge 𝑋𝑖 → 𝑋𝑗 ∈ ℰ where 𝑋𝑖 , 𝑋𝑗 ∈ 𝒳 then the 

node 𝑋𝑗 is the child node of 𝑋𝑖  . We will use the notation 𝐶ℎ𝑖𝑙𝑑(𝑋𝑗) to express the set of nodes 

that are parents of 𝑋𝑗. Similarly, we will use the notation 𝑃𝑎𝑟(𝑋𝑖) to denote the set of nodes 

that are parents of 𝑋𝑖. Additionally, the notation 𝑁𝑜𝑛𝐷𝑒𝑠𝑐𝑒𝑑𝑎𝑛𝑡𝑠(𝑋𝑖) will be used to 

represent the set of nodes that are not descendants of X𝑖.  



January 2023                            13 | P a g e  

 

Figure 2 represents an instance of a DAG where the set of nodes 𝒱 is as follows: 

𝒱 = {𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦, 𝐼𝑛𝑡𝑒𝑙𝑙𝑖𝑔𝑒𝑛𝑐𝑒, 𝐺𝑟𝑎𝑑𝑒, 𝑆𝐴𝑇, 𝐿𝑒𝑡𝑡𝑒𝑟} 

While the set of edges is as follows: 

ℰ = { 𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 → 𝐺𝑟𝑎𝑑𝑒 , 𝐼𝑛𝑡𝑒𝑙𝑙𝑖𝑔𝑒𝑛𝑐𝑒 → 𝐺𝑟𝑎𝑑𝑒 , 𝐼𝑛𝑡𝑒𝑙𝑙𝑖𝑔𝑒𝑛𝑐𝑒 → 𝑆𝐴𝑇 , 𝐺𝑟𝑎𝑑𝑒 → 𝐿𝑒𝑡𝑡𝑒𝑟 }  

Using the previous statements, we can make the following declarations for the node 𝐺𝑟𝑎𝑑𝑒: 

P𝑎𝑟(𝐺𝑟𝑎𝑑𝑒) = {𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦, 𝐼𝑛𝑡𝑒𝑙𝑙𝑖𝑔𝑒𝑛𝑐𝑒} 

Cℎ𝑖𝑙𝑑(𝐺𝑟𝑎𝑑𝑒) = {𝐿𝑒𝑡𝑡𝑒𝑟} 

𝑁𝑜𝑛𝐷𝑒𝑠𝑐𝑒𝑑𝑎𝑛𝑡𝑠(𝐺𝑟𝑎𝑑𝑒) = {𝑆𝐴𝑇} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



January 2023                            14 | P a g e  

 

2.2 Bayesian Networks 
 

2.2.1 Introduction to Bayesian Networks 
 

Bayesian Networks [3] represent an intersection between graph theory and probability theory, 

aiming to facilitate the modeling of probabilistic and causal inferences in real-world 

applications [4]. 

Bayesian Networks can be applied in various fields. For instance, they can be used as decision-

support systems, specifically in sensor validation systems [5]. The basic idea is to determine 

whether a sensor is faulty by analyzing a set of sensor readings (represented through the 

Bayesian Network) that contribute to the overall system operation.  

Another application of Bayesian Networks is in medical diagnosis systems [4, Ch.2]. In this 

case, the objective is to diagnose a disease based on patient findings. The basic idea can be 

expressed as follows: 

𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 = 𝑚𝑎𝑥𝑖𝑃(𝐷𝑖|𝐸) 

Generally, 𝑃(𝐷𝑖|𝐸) represents the probability of disease 𝐷𝑖 given a set of evidence E, which 

includes observed patient symptoms and laboratory examination results. Examples of such 

networks include MUNIN [6], used for diagnosing neuromuscular disorders, and HEPAR2 [7], 

used for diagnosing liver disorders. 

Bayesian Networks have various applications, including cybersecurity [8]. In this context, 

Bayesian Networks are utilized as real-time security analysis systems that determine whether 

the input is malicious or benign.  

One specific type of Bayesian Network that falls under the category of Classifiers is Naïve 

Bayes Classifiers (See Chapter 2.3). Naïve Bayes Classifiers find applications in diverse fields. 

Some well-known examples include Document Classifiers [4, Ch.11] and Information Retrieval 

systems [4, Ch.12].  

The graphical models we are referring to initially belong to the category of probabilistic 

graphical models, specifically Bayesian Networks. As previously mentioned, Bayesian 

Networks are graphical models with a fundamental characteristic represented by a graph (See 

Chapter 2.1). The use of a graph provides a compact representation of the joint probability 

distribution, typically defined in a high-dimensional probability space. 

The representation of a graph has two perspectives. The first perspective pertains to 

representing the set of independencies among the nodes. The second aspect involves utilizing 

these independencies to decompose the initial distribution into smaller factors, typically 

defined in lower-dimensional probability spaces. This approach allows us to avoid working 

with the high-dimensional probability space of the joint probability distribution. 

 

 

 



January 2023                            15 | P a g e  

 

Probability queries 

Except for learning parameters (See Chapter 2.5), which define the joint probability 

distribution of a Bayesian Network, another objective is to estimate queries related to the 

distributions of random variables. This specific category of queries is referred to as probability 

queries. Probability queries consist of two parts: 

• The first part pertains to the evidence, which comprises a subset 𝜠 of random 

variables accompanied by an instance 𝒆 of values from those random variables. We 

also use queries where the evidence is the empty set, i.e., 𝜠 =  ∅. 

• The second part relates to the query variables. Generally, this set consists of a subset 

𝒀 of random variables. In most cases, the query variables pertain to the entire set of 

random variables in the network, rather than a subset. This implies querying the joint 

probability distribution of the network. 

 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑡𝑦 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 ∶ 𝑃(𝒀 | 𝑬 = 𝒆) 

The main objective is to estimate the probability queries over the joint probability distribution, 

assuming that 𝜠 =  ∅. We refer to these queries as follows: 

𝑃(𝒀) = 𝑃(𝑌1, … , 𝑌𝑛) 

Assuming a set of random variables 𝜲 = {𝑋1, . ..  , 𝑋𝑛}, where each variable represents a 

binary value (e.g., the outcome of a coin toss), the objective is to estimate the joint probability 

distribution  𝑃(𝑋1 , … , 𝑋𝑛) defined by the random variables in set 𝑿.  In the simplest case, this 

would require 2𝑛 − 1  parameters, with one parameter for each possible assignment of values 

𝑥1, … , 𝑥𝑛 from the random variables. However, managing the joint probability distribution 

becomes infeasible from various perspectives. This includes the challenge of allocating 

sufficient heap space to store all the different parameter values of the joint distribution, as 

well as the substantial volume of datasets required to estimate the parameters, which 

exponentially increases with the number of random variables. 

Now, let's assume that the set 𝑿 consists of marginally independent random variables. This 

means that the distributions for any pair of random variables 𝑋𝑖 , 𝑋𝑗 are independent (𝑋𝑖  ⊥

𝑋𝑗). By applying the Chain Rule (See Chapter 2.1), we can express the joint probability 

distribution as follows: 

𝑃(𝑋1 , … , 𝑋𝑛) = 𝑃(𝑋1) ∙ … ∙  𝑃(𝑋𝑛) 

Using the independence property among the random variables, now we can define the joint 

probability distribution exclusively using the marginal distribution 𝑃(𝑋𝑖) of the random 

variables 𝜲. Exploiting the previous statement, if 𝜃𝛸𝑖
 denotes the parameter which defines 

the marginal probability distribution 𝑃(𝑋𝑖) of the binary-valued variable. 

By utilizing the independence property among the random variables, we can define the joint 

probability distribution exclusively using the marginal distribution 𝑃(𝑋𝑖) of the random 

variables 𝜲. Expanding on the previous statement, if 𝜃𝛸𝑖
 denotes the parameter that defines 

the marginal probability distribution 𝑃(𝑋𝑖)  of a binary-valued variable 𝑋𝑖: 



January 2023                            16 | P a g e  

 

𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 ∶ 𝑃(𝑋𝑖 = 𝑥𝑖) =  𝜃𝑥𝑖
=  {

𝜃𝑖 ,   𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 = 𝑥𝑖
1

1 −  𝜃𝑖 ,   𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 = 𝑥𝑖
0 

 

 

 

 

 

 

 

 

 

Figure 2: Probability mass function(pmf) from a binary-valued random variable 𝑋𝑖  

 

Now the only requirement to define the joint probability distribution is to determine the 

parameters 𝜃𝑋1
 , … , 𝜃𝑋𝑛

 for distributions of random variables 𝑋1 , . . , 𝑋𝑛. In conclusion, the 

joint probability distribution defines as follows: 

𝑃(𝑥1 , … , 𝑥𝑛) = ∏ 𝜃𝑋𝑖

𝑛

𝑖=1

 

In this way, we successfully reduce the initial space of joint probability distribution from a 

subspace of ℝ2𝑛
 to an n-dimensional manifold of ℝ2𝑛

. Additionally, we achieve to obtain 

linear dependence on the number of random variables. 

 

 

The previous example represents an ideal scenario that is difficult to achieve in real-world 

applications due to the presence of dependencies among different random variables. In most 

cases, it is more reasonable to consider conditional independences among different random 

variables as an alternative approach. By incorporating conditional independences and Directed 

Acyclic Graph (DAG), we can effectively model and represent Bayesian Networks. 

 



January 2023                            17 | P a g e  

 

Figure 3: Part of the graph from the Student Bayesian Network 

 

Let’s assume the Bayesian Network from Figure 3. The network consists of the nodes 

Intelligence(Ι), Grade(G), and SAT(S). The random variable 𝛪 contains two values 𝑉𝑎𝑙(𝐼) =

{𝑖1, 𝑖0}, where 𝑖1 refers to high-intelligence students and 𝑖0 refers to low-intelligence students. 

Similarly, the random variable 𝑆 contains two values 𝑉𝑎𝑙(𝑆) = {𝑠1, 𝑠0}, where 𝑠1 denotes a 

high score and 𝑠0 denotes a low score. Finally, the random variable 𝐺 has three values 

𝑉𝑎𝑙(𝐺) = {𝑔1, 𝑔2, 𝑔3}, where 𝑔1, 𝑔2, 𝑔3 correspond to grades 𝐴, 𝐵, 𝐶 , respectively. In this 

case, the direct approach to the joint probability distribution of the three variables requires 

12(2 ∙ 2 ∙ 3) parameters, with each parameter representing the probability of the combination 

of values from three variables. 

The property of versatile independence among random variables can’t be applied due to 

dependencies among them (for instance, the grade of a student affects the student’s 

intelligence up to a certain point). We assume the conditional independency: (𝑆 ⊥ 𝐺 | 𝐼) 

meaning that the random variable Grade(G) is independent of the random variable SAT(S) 

given the random variable Intelligence(Ι). 

Using the previous conditional independence, we can express the joint probability distribution 

using the following equation: 

𝑃(𝐼, 𝐺, 𝑆) = 𝑃(𝑆, 𝐺 | 𝐼) ∙ 𝑃(𝐼) =  𝑃(𝑆 | 𝐼) ∙ 𝑃(𝐺 | 𝐼)  ∙ 𝑃(𝐼) 

Even in the simplest case, with the usage of one conditional independence, we can separate 

the joint probability distribution into smaller independent factors, which contributes to a more 

compact representation of the initial distribution. Now, the number of parameters required 

to define the joint distribution is 7 parameters (the difference between them is not significant, 

but it increases as the number of variables and conditional independencies also increases, the 

example is illustrative), one parameter for the distribution 𝑃(𝐼), two parameters for the 

distribution 𝑃(𝑆) and four parameters for the distribution 𝑃(𝐺). 

The separation of a joint probability distribution into smaller factors highlights the property of 

modularity. This means that the insertion or deletion of a random variable affects only a 

specific part of joint distribution rather than the entire as in direct approach of distribution. 

In the direct approach, we would need to renumerate all the possible combinations of values 

from the new set of random variables. Moreover, the factors of joint probability distribution 

compromise the main characteristic so the Maximum Likelihood Estimation (MLE – See. 

Chapter 2.5) can be applied in a distributed environment (See Chapter 2.7). 



January 2023                            18 | P a g e  

 

In conclusion, the representation of the Bayesian Network through a directed acyclic graph 

(DAG) offers two advantages: 

• A compact representation of the set of conditional independences among the random 

variables that define the joint probability distribution. 

• A mechanism that provides a compact representation of joint probability 

distribution(factors). Through the process of factorization, we can avoid the initial 

high-dimensional space and instead work with a product of factors corresponding to 

lower-dimensional spaces. 

 

2.2.2 Bayesian Network Semantics 
 

This section presents the most essential definitions regarding the Bayesian Networks. 

A Bayesian Network structure, denoted as 𝒢(𝒳, ℰ) is a directed acyclic graph (DAG – See 

Chapter 2.1), where the nodes correspond to the set of random variables 𝒳 = {X1 , … , 𝑋𝑛} 

and the set of directed edges ℰ corresponds to the conditional independences among nodes. 

Each directed edge indicates a direct dependence among the involved random variables. We 

denote 𝑃𝑎𝑟(𝑋𝑖) as the set of parents nodes of 𝑋𝑖  and 𝑁𝑜𝑛𝐷𝑒𝑠𝑐𝑒𝑑𝑎𝑛𝑡𝑠(𝑋𝑖) as the set of nodes 

that are not descendants’ nodes of 𝑋𝑖. The graph 𝒢 can express the set of conditional 

independences, referred to as local independences and denoted as 𝛪ℓ(𝒢), with the following 

equation: 

𝑃(𝑋1, … . , 𝑋𝑛) =  ∏ 𝑃( 𝑋𝑖 | 𝑃𝑎𝑟(𝑋𝑖) )

𝑛

𝑖=1

 

The latter equation is known as the chain rule of Bayesian Networks. Each factor of product 

𝑃( 𝑋𝑖  | 𝑃𝑎𝑟(𝑋𝑖) ) corresponds to well-known local conditional probability distributions 

(CPDs). 

The random variables used in this thesis belong to the category of categorical-discrete random 

variables. As a result, the conditional probability distributions (CPDs) of these variables fall into 

the well-known category of Tabular CPDs. Each CPD 𝑃( 𝑋𝑖  | 𝑃𝑎𝑟(𝑋𝑖) ) can be represented as 

a table where each entry corresponds to the probability associated with a combination of 

values between 𝑋𝑖  and 𝑃𝑎𝑟(𝑋𝑖)(See Figure 4). 

Each row of Tabular CPD 𝑃( 𝑋𝑖  | 𝑃𝑎𝑟(𝑋𝑖) = 𝒙𝒊 ) represents a multinomial distribution with 

𝑘 =  𝑉𝑎𝑙(𝑋𝑖) states where 𝒙𝒊 ∈ 𝑉𝑎𝑙(𝑃𝑎𝑟(𝑋𝑖)) and the corresponding 

probabilities(parameters) 𝑝𝑖  ∈ [0,1] 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 ∈ 𝑉𝑎𝑙(𝑋𝑖) 𝑎𝑛𝑑 ∑ 𝑝𝑖
𝑉𝑎𝑙(𝑋𝑖)
𝑖=1 = 1. Each row of 

Tabular CPD required a k-dimensional parameter vector to define the corresponding 

multinomial distribution. We denote the set of required parameters for all distributions(rows) 

of the CPD 𝑃( 𝑋𝑖 | 𝑃𝑎𝑟(𝑋𝑖) ) of variable 𝑋𝑖  as 𝜃𝑋𝑖
. Additionally, we use 𝜃 = {𝜃𝑋1

, . . . , 𝜃𝑋𝑛
}  to 

represent all the parameters required for all CPDs in the Bayesian network 𝒢(𝒳, ℰ), which is 

necessary to estimate the joint probability distribution of the network. 



January 2023                            19 | P a g e  

 

 

Figure 4: Tabular CPD of Grade node 

We consider a Bayesian Network 𝒢(𝒳, ℰ), where 𝒳 consists of 𝑛 binary random variables. It 

can be proven that a direct approach to joint probability distribution requires 2𝑛 −

1 parameters. However, by factorizing the joint probability distribution based on the graph 𝒢 

and assuming that 𝑘 is the maximum number of parents nodes for any variable, we can 

demonstrate that the number of parameters required for the joint probability distribution is 

less than 𝑛 ∙ 2𝑘. This approach allows us to avoid exponential independence on the number of 

nodes 𝑛, which can be infeasible for large values of 𝑛. Instead, the exponential independence 

remains only on the number of nodes 𝑘, which is advantageous since a random variable 

usually depends on a small number of random variables in the network. In most cases, we 

observe that 𝑛 ≪ 𝑘. The latter property highlights one of the main benefits of the Bayesian 

Network because we achieve an exponentially smaller number of parameters for the joint 

probability distribution. 

 

Discretization 

When a Bayesian Network involves continuous random variables, the initial step is to convert 

these variables into discrete ones. This conversion can be accomplished through a process 

known as discretization. This serves as a pre-processing step that utilizes the available 

information for each random variable, before proceeding to learn the parameters of joint 

probability distribution. Various methods can be employed for discretization, and detailed 

descriptions of these methods can be found in [9]. In this context, we specifically focus on and 

support a specific method, namely equal width binning, which is akin to constructing an equal 

width histogram. 

 

 

 

 



January 2023                            20 | P a g e  

 

 

Figure 5: Equal width binning 

 

The objective of the equal width binning is to divide the range of values of a continuous 

random variable into 𝑘 equally-sized buckets, where 𝑘 is a user-defined parameter. It is 

important to note that this method may not be suitable for skewed distributions, although 

there are more advanced techniques available to address this issue. However, such advanced 

methods are beyond the scope of this thesis. 

Given a continuous random variable 𝑋 with 𝑉𝑎𝑙(𝑋) ∈ [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] and assuming k 

represents the number of buckets, the width of each bucket can be calculated as follows: 

𝑤𝑖𝑑𝑡ℎ =
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

𝑘
 

While creating the bucket boundaries, they are defined in the following manner: 

𝑥𝑚𝑖𝑛 + 𝑖 ∙ 𝑤𝑖𝑑𝑡ℎ , 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, … , 𝑘 − 1 

 

The method falls under the unsupervised setting as it does not take into account any available 

class labels. Additionally, it belongs to the category of global methods, where the 

partitions(buckets) are created based on the entire continuous space defined by the random 

variable, independent of other variables. It is also considered as a static method, as it requires 

a user-defined parameter that determines the maximum number of buckets-partitions to be 

created. 

It is important to note that the discretization method is not combined with other aspects, such 

as Bayesian Structure Learning. In this thesis, discretization is used exclusively as a pre-

processing step. 

 

 

 



January 2023                            21 | P a g e  

 

2.2.3 Student Bayesian Network  
 

Figure 6: Student Bayesian Network accompanied with CPDs 

Given the previous information, we can now examine a comprehensive example of a Bayesian 

Network. We will refer to it as the Student Bayesian Network (Figure 6). The Student Network 

𝒢(𝒳, ℰ) consists of five nodes: the Intelligence (𝐼), the Difficulty(𝐷), the Grade(𝐺), the SAT 

grade(𝑆) and the quality of recommendation letter(𝐿): 

𝒳 = {𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦(𝐷), 𝐼𝑛𝑡𝑒𝑙𝑙𝑖𝑔𝑒𝑛𝑐𝑒(𝐼), 𝐺𝑟𝑎𝑑𝑒(𝐺), 𝑆𝐴𝑇(𝑆), 𝐿𝑒𝑡𝑡𝑒𝑟(𝐿) } 

All the random variables in the network are binary-valued, except for the 𝐺𝑟𝑎𝑑𝑒(𝐺), which is 

a ternary-valued variable. The set of local conditional independences 𝛪𝑙(𝒢) based on 𝒢(𝒳, ℰ), 

can be defined as follows: 

𝐹𝑜𝑟 𝐼𝑛𝑡𝑒𝑙𝑙𝑖𝑔𝑒𝑛𝑐𝑒, 𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 𝑛𝑜𝑑𝑒𝑠 ∶ ( 𝐼 ⊥ 𝐺) 

𝐹𝑜𝑟 𝐿𝑒𝑡𝑡𝑒𝑟 𝑛𝑜𝑑𝑒 ∶ ( 𝐿 ⊥ 𝐼, 𝐷, 𝑆 | 𝐺) 

𝐹𝑜𝑟 𝐺𝑟𝑎𝑑𝑒 𝑛𝑜𝑑𝑒 ∶ ( 𝐺 ⊥ 𝑆 | 𝐼, 𝐷) 

𝐹𝑜𝑟 𝑆𝐴𝑇 𝑛𝑜𝑑𝑒 ∶ ( 𝑆 ⊥ 𝐷, 𝐺, 𝐿 | 𝐼) 

 

Given the 𝒢(𝒳, ℰ) and 𝛪𝑙(𝒢), we can express the joint probability distribution of 𝒢 in the 

following way (chain rule of Bayesian Networks): 

𝑃(𝐼, 𝐷, 𝑆, 𝐺, 𝐿) =  𝑃(𝐼) ∙ 𝑃(𝐷) ∙ 𝑃(𝐺 | 𝐼, 𝐺) ∙ 𝑃(𝑆 | 𝐼) ∙ 𝑃(𝐿|𝐺) 

In this case, the number of parameters required to define the joint probability distribution is 

15. We need one parameter for each binomial distribution of 𝐼𝑛𝑡𝑒𝑙𝑙𝑖𝑔𝑒𝑛𝑐𝑒, 𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 

nodes, 2 parameters for each of the four multinomial distributions of 𝐺𝑟𝑎𝑑𝑒 node, one 

parameter for each of the two binomial distributions of 𝑆𝐴𝑇 node and one parameter for each 

of the three binomial distributions of 𝐿𝑒𝑡𝑡𝑒𝑟 node. On the other hand, the direct approach to 

joint probability distribution requires 47 parameters(24 ∙ 3). 



January 2023                            22 | P a g e  

 

Example of probability queries in the Student Bayesian Network 

The objective is to estimate probability queries on joint probability distribution. Based on the 

Student Example, an example of a probability query can be formulated in the following 

manner: 

𝑃(𝑖1, 𝑑0, 𝑔2, 𝑠1, 𝑙0) = 𝑃( 𝑖1) ∙ 𝑃(𝑑0) ∙  𝑃(𝑔2) ∙  𝑃(𝑠1) ∙  𝑃(𝑙0) = 0.004 

The query expresses the probability of an intelligent student; the probability of a low-difficulty 

subject; the probability that an intelligent student takes 𝐵 on a low-difficulty subject; the 

probability that an intelligent student has a high SAT score and the probability that a student 

has 𝐵 grade and takes a weak recommendation letter. 

 

 

2.3 Naïve Bayes Classifiers 
 

2.3.1 Introduction to Naïve Bayes Classifiers 
 

Initially, we focus on a special case of Bayesian Networks, namely the well-known Naïve Bayes 

Classifiers [10]. The Naïve Bayes Classifier is an intersection between the graph and 

probabilistic theory. In this case, the classification is based on the widely known rule of Bayes’ 

theorem, which is described analytically below. 

 Naïve Bayes Classifiers can be applied to a variety of real-word applications. They are 

commonly used as Documents Classifiers and are particularly effective in email spam filtering. 

They are also utilized in Medical Diagnosis Systems and Credit-Card Fraud Detection Systems 

In addition, they have proven to be valuable in the field of Sentiment Analysis. Furthermore, 

can be integrated into recommender systems [11], where they work in conjunction with 

collaborative filtering methods to create scalable hybrid recommender systems that achieve 

improved accuracy compared to the other existing systems. In this case, the Naïve Bayes 

Classifier functions similarly to Documents Classifiers, but the set of class labels represents a 

set of recommendations. 

Considering the process of classification, the objective is to construct a function that assigns 

class labels to instances taking into account the available set of attributes. Both the attribute 

and the class label set are known in advance, making it a supervised setting. 

 

2.3.2 Naïve Bayes Classifiers Semantics 
 

The Naïve Bayes Classifier operates by learning the CPDs of each feature 𝑋𝑖  given the class 

variable 𝐶, denoted as 𝑃(𝑋𝑖|𝐶), assuming that each feature 𝑋𝑖  is independent of others given 

the class variable 𝐶(naïve Bayes assumption). Classification is performed using Bayes’ Rule, 

where the class label 𝑐𝑖 with the highest posterior probability given the input feature vector 

𝒙, 𝑃(𝐶 = 𝑐𝑖 | 𝒙) is selected. 



January 2023                            23 | P a g e  

 

We provide the most fundamental definitions around Naïve Bayes Classifiers. 

 

 

 

 

 

 

 

 

 

 

Figure 7: Naïve Bayes Classifier 

 

A Naïve Bayes Classifiers structure 𝒢(𝒳, ℰ) is a directed acyclic graph (Figure 7), where the 

nodes correspond to the set of random variables 𝒳 = {X1 , … , 𝑋𝑛, 𝐶} and the set of directed 

edges ℰ represents the conditional independences among nodes. In this case, the set of 

variables 𝒳 can be divided into two disjoint subsets. The first subset refers to the set of 

features, denoted as {X1 , … , 𝑋𝑛} ⊆  𝒳 assuming that the number of features is 𝑛. The second 

subset pertains to the class variable 𝐶 ⊆  𝒳, with the set of class labels consisting of 

𝑉𝑎𝑙(𝐶) =  {𝑐1, … , 𝑐𝑘}, where 𝑘 represents the number of class labels. 

In the context of Naïve Bayes Classifiers, the so-called naive Bayes assumption it holds, which 

states that the features are conditionally independent given the class label. Furthermore, for 

each feature node 𝑋𝑖  with 𝑖 ∈ {1, . . , 𝑛}, holds that 𝑃𝑎𝑟(𝑋𝑖) = 𝐶. As a result, the set of 

conditional independences 𝛪ℓ(𝒢) can be expressed as follows: 

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑋𝑖 ∶  ( 𝑋𝑖  ⊥ 𝑿−𝒊 |  𝐶 ) 

𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑿−𝒊 = {𝑋1, . . , 𝑋𝑛} − {𝑋𝑖}. 

Given the structure of Naïve Bayes Classifiers 𝒢(𝒳, ℰ) and the corresponding set of local 

independencies 𝛪ℓ(𝒢), we can express the joint probability distribution 𝑃(𝒳) as follows: 

𝑃(𝐶, 𝑋1, … . , 𝑋𝑛) =  𝑃(𝐶) ∙ ∏ 𝑃( 𝑋𝑖  | 𝐶 )

𝑛

𝑖=1

 

Each factor 𝑃( 𝑋𝑖  | 𝐶 ) corresponds to the local conditional probability distributions (CPDs) of 

feature 𝑋𝑖. Similar to Bayesian Networks, we can express the joint probability distribution as a 

product of these factors(factorization). In this case, the joint probability distribution consists 

of the prior distribution 𝑃(𝐶) and the set of CPDs 𝑃(𝑋𝑖|𝐶) where each of them represents a 

multinomial distribution. This approach allows us to significantly reduce the number of 

parameters required for the joint probability distribution. 



January 2023                            24 | P a g e  

 

The random variables used in this context belong to the category of categorical-discrete 

random variables. Therefore, the conditional probability distributions (CPDs) of these variables 

belong to the well-known category of Tabular CPDs. For continuous variables, we employ the 

method of discretization (See Chapter 2.2). In conclusion, the Multinomial Naïve Bayes 

Classifier is used throughout this thesis. 

Each CPD 𝑃( 𝑋𝑖  | 𝐶) can be represented as a table where each entry corresponds to the 

probability of a combination of values of 𝑋𝑖  and the class variable 𝐶. Additionally, each CPD 

characterized by a set of parameters, denoted as 𝜃𝑋𝑖
. 

Given a Naïve Bayes Classifier consists of 𝑛 binary-valued features and a binary-valued class 

variable, we can prove that the number of independent parameters in the factorized joint 

probability distribution is 2𝑛 + 1. This means that the number of parameters is linearly 

dependent on the number of features 𝑛, in contrast to the direct approach of joint probability 

distribution where the dependence on the number of features is exponential ( 2𝑛 − 1 

parameters). Despite the strong assumptions of independence among features, the simplicity 

and the linear dependence on a set of features result in a small number of required 

parameters. This property makes Naïve Bayes Classifier applicable in many cases involving 

high-dimensional feature vectors. 

Despite its simplicity and the strong assumptions of independence, which may not hold in 

realistic scenarios, the Naïve Bayes Classifier performs quite well even when compared to a 

more sophisticated classifier like C4.5, as described in detail in [12]. The success of Naïve Bayes 

Classifiers as noted in [13], can be attributed to the fact that the classification error is not 

necessarily related to the quality of fit of the joint probability distribution (appropriateness of 

conditional independencies). In other words, the estimation error of joint probability does not 

necessarily result in classification errors. The classification of class labels is not highly sensitive 

to errors in estimating instance probabilities. 

Regarding the process of Classification, we consider a Naïve Bayes Classifiers structure 

𝒢(𝒳, ℰ) with the set of features corresponding to {X1 , … , 𝑋𝑛} ⊆  𝒳 and a class variable 𝐶 ⊆

 𝒳 where the values of the variable are represented as  𝑉𝑎𝑙(𝐶) = {𝑐1, … , 𝑐𝑘}. The objective, 

for any n-dimensional vector 𝒙 =  [𝑥1, … , 𝑥𝑛] is to determine the class label with the highest 

posterior probability given an n-dimensional vector. To achieve this, we select the class label 

that maximizes the following expression: 

𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙 = arg 𝑚𝑎𝑥𝑐𝑖∈𝑉𝑎𝑙(𝐶)𝑃(𝐶 = 𝑐𝑖|𝒙)  

Our goal is to maximize the probability 𝑃(𝐶|𝒙). By applying Bayes’ rule, the probability is 

defined as follows: 

𝑃(𝐶 = 𝑐𝑖|𝒙) =  
𝑃(𝒙|𝐶 = 𝑐𝑖) ∙ 𝑃(𝐶 = 𝑐𝑖)

𝑃(𝒙)
 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑖 ∈ 𝑉𝑎𝑙(𝐶) 

 

 

 

 



January 2023                            25 | P a g e  

 

2.3.3 Spam classification problem 

Considering the previous statements, we will now present a complete example of a Naïve 

Bayes Classifier. Our focus is on determining whether an email is a spam or nor, based on its 

context. This example falls within the broader field of Document Classification. We assume 

that the class variable 𝐶 is a binary-valued variable, with values represented as 𝑉𝑎𝑙(𝐶) =

{𝑠𝑝𝑎𝑚, 𝑛𝑜𝑛_𝑠𝑝𝑎𝑚}. 

 

 

 

 

 

 

 

 

 

 

Figure 8: Naïve Bayes Classifier for spam filtering 

 

 

 

The context of each email consists of a bag-of-words, where each word represents a feature. 

In this example, we assume three features corresponding to the words “Stock», «Buy” and 

“Project”. Each feature is accompanied by its CPD 𝑃(𝑊𝑖|𝐶), where 𝑊𝑖 ∈

{𝑆𝑡𝑜𝑐𝑘, 𝐵𝑢𝑦, 𝑃𝑟𝑜𝑗𝑒𝑐𝑡}. The network structure is illustrated in Figure 8. The set of features 

generally encompasses a large set of keywords used to define the class label. 

Applying the naïve Bayes assumption, the joint probability distribution is defined as follows: 

𝑃(𝐶, 𝑆𝑡𝑜𝑐𝑘, 𝐵𝑢𝑦, 𝑃𝑟𝑜𝑗𝑒𝑐𝑡) =  𝑃(𝐶) ∙ 𝑃( 𝑆𝑡𝑜𝑐𝑘 | 𝐶 ) ∙ 𝑃( 𝐵𝑢𝑦 | 𝐶 ) ∙ 𝑃( 𝑃𝑟𝑜𝑗𝑒𝑐𝑡 | 𝐶 ) 

Our goal is to classify an email into one of the two class labels. Assuming that the email 

contains the words stock, and buy but does not contain the word project, the input feature 

vector can be represented as follows: 𝒙 = [𝑠𝑡𝑜𝑐𝑘, 𝑏𝑢𝑦, ¬𝑝𝑟𝑜𝑗𝑒𝑐𝑡]. To determine the class 

label, we need to calculate the posterior probabilities given 𝒙, which can be defined as follows: 

𝐹𝑜𝑟 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙 𝑠𝑝𝑎𝑚: 

 P(𝑠𝑝𝑎𝑚 | 𝒙) = 𝑃(𝒙|𝑠𝑝𝑎𝑚) ∙ 𝑃(𝑠𝑝𝑎𝑚)   

= 𝑃(𝑠𝑡𝑜𝑐𝑘|𝑠𝑝𝑎𝑚) ∙ 𝑃(𝑏𝑢𝑦|𝑠𝑝𝑎𝑚) ∙ 𝑃(¬𝑝𝑟𝑜𝑗𝑒𝑐𝑡|𝑠𝑝𝑎𝑚) ∙ 𝑃(𝑠𝑝𝑎𝑚)  

 



January 2023                            26 | P a g e  

 

𝐹𝑜𝑟 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙 𝑛𝑜𝑛_𝑠𝑝𝑎𝑚: 

P(𝑛𝑜𝑛_𝑠𝑝𝑎𝑚 | 𝒙) = 𝑃(𝒙| 𝑛𝑜𝑛_𝑠𝑝𝑎𝑚 ) ∙ 𝑃(𝑛𝑜𝑛_𝑠𝑝𝑎𝑚) 
=  𝑃(𝑠𝑡𝑜𝑐𝑘| 𝑛𝑜𝑛_𝑠𝑝𝑎𝑚) ∙ 𝑃(𝑏𝑢𝑦|𝑛𝑜𝑛_𝑠𝑝𝑎𝑚) ∙ 𝑃(¬𝑝𝑟𝑜𝑗𝑒𝑐𝑡|𝑛𝑜𝑛_𝑠𝑝𝑎𝑚) ∙ 𝑃(𝑛𝑜𝑛_𝑠𝑝𝑎𝑚) 

 

The class label is determined by comparing the probabilities P(𝑠𝑝𝑎𝑚 | 𝒙) and 

P(𝑛𝑜𝑛_𝑠𝑝𝑎𝑚 | 𝒙 ), and selecting the one with the highest value. 

 

 

 

 

2.4 Forward Sampling 
 

In this section, we present the Forward Sampling algorithm [14] which is used to generate all 

the training instances. The training instances are used for the experimental evaluation of the 

proposed approaches. 

For the generation of training instances, each instance consists of a full particle of all the 

variables in the Bayesian network 𝒢(𝒳, ℰ), confirming that the setting is supervised. 

We focus on estimating probabilities queries 𝑃(𝒀 =  𝒚) based on the joint probability 

distribution 𝑃(𝒳) of the network 𝒢, where 𝒀 ⊆ 𝒳 𝑎𝑛𝑑 𝒚 ∈ 𝑉𝑎𝑙(𝒴). However, we do not 

consider conditional probability queries of the form  𝑷( 𝒀 = 𝒚 |𝑬 = 𝒆), where 𝒀, 𝑬  ⊆

𝒳 , 𝒚 ∈ 𝑉𝑎𝑙(𝒀) and 𝒆 ∈ 𝑉𝑎𝑙(𝑬). 

We have chosen the Forward Sampling algorithm to generate full particles to estimate queries 

on the joint probability distribution. Unlike other algorithms like Rejection Sampling and 

Likelihood Weighting [15], which are typically used for generating full particles to estimate 

conditional probability queries. 

In certain cases, when dealing with highly skewed distributions where only a small number of 

variables have negligible probability distributions, alternative algorithms like Deterministic 

Search may be necessary. However, since these cases are beyond the scope of this thesis, we 

have opted to utilize the Forward Sampling algorithm. 

The algorithm is based on the concept of generating data for each variable according to its 

probability distribution. The first step in implementing the algorithm is to establish a 

topological order of the DAG (Directed Acyclic Graph) representing the Bayesian network 𝒢. 

This ordering ensures that each node 𝛸𝑖  is preceded before any node  𝑋𝑗 in the sequence, 

meaning there are no directed paths from 𝛸𝑖 to 𝑋𝑗. This step is crucial as it guarantees that 

data for each node’s parent nodes is generated before the node itself. 

Based on the ordering of nodes, the algorithm proceeds by sampling for each node according 

to its corresponding CPD 𝑃(𝑋𝑖  |𝑃𝑎𝑟(𝑋𝑖)). The process is repeated for each node in the 

ordering. Once the process is completed for all nodes, a particle is generated. Below we 

describe the algorithm.   



January 2023                            27 | P a g e  

 

Algorithm 1: Forward Sampling in BNs 

Input:  

Bayesian Network Structure 𝒢(𝒳, ℰ) with 𝒳 = { 𝑋1 , . . . , 𝑋𝑛}  

T number of full particles 

 

Output: T full particles 

 

1. Let 𝑋1 , . . . , 𝑋𝑛 be a topological ordering of the Bayesian Network 

2. For 1 to T 

3.   Initialize an empty instantiation 𝒕 

4.   Foreach node from topological ordering 𝑋1 , . . . , 𝑋𝑛 

5.     Get the values of parents of 𝑋𝑖 from 𝒕 

6.     Sample 𝑥𝑖 from 𝑃(𝑋𝑖| 𝑃𝑎𝑟(𝑋𝑖)) 

7.     Add value 𝑥𝑖 to 𝒕 

8.   End 

9.   return 𝒕 =  (𝑥1, … , 𝑥𝑛) 

10.  End 

 

The process of generating a particle is described analytically below. We will use the Student 

(See Chapter 2.2.3) as an example. Assuming that the generated sequence of the topological 

order is as follows: D𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦(𝐷), 𝐼𝑛𝑡𝑒𝑙𝑖𝑔𝑒𝑛𝑐𝑒(𝐼), 𝐺𝑟𝑎𝑑𝑒(𝐺), 𝑆𝐴𝑇(𝑆), 𝐿𝑒𝑡𝑡𝑒𝑟(𝐿), the 

algorithm operates as follows: 

 

Figure 9: Topological ordering of Student Bayesian Network 

 

1. Initially, we sample from the distribution 𝑃(𝐷) for the D𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 node, assuming 

D𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 = 𝑑0 

2. Next, we sample from the distribution 𝑃(𝛪) for the 𝐼𝑛𝑡𝑒𝑙𝑖𝑔𝑒𝑛𝑐𝑒 node, assuming 

𝐼𝑛𝑡𝑒𝑙𝑖𝑔𝑒𝑛𝑐𝑒 = 𝑖0. 

3. Then, we sample from the distribution 𝑃(𝐺| 𝐼 = 𝑖0, 𝐷 = 𝑑0) for the 𝐺𝑟𝑎𝑑𝑒 node, 

assuming 𝐺𝑟𝑎𝑑𝑒 = 𝑔2. 

4. Subsequently, we sample from the distribution 𝑃(𝑆| 𝐼 = 𝑖0) for the 𝑆𝐴𝑇 node, 

assuming 𝑆𝐴𝑇 = 𝑠0. 

5. Finally, we sample from the distribution 𝑃(𝐿| 𝐺 = 𝑔2) for the 𝐿𝑒𝑡𝑡𝑒𝑟 node, assuming 

𝐿𝑒𝑡𝑡𝑒𝑟 = 𝑙0. 

6. As a result, the particle corresponds to 𝐷 = 𝑑0, 𝐼 = 𝑖0, 𝐺 = 𝑔2, 𝑆 = 𝑠0, 𝐿 = 𝑙0. 

 

 



January 2023                            28 | P a g e  

 

Analysis of the Forward Sampling algorithm 

Given a dataset 𝐷 = {𝜉[1], . . . , 𝜉[𝛭]} of full particles, which is generated by sampling, 

applying the convergence bounds [1, Ch. 17], we can estimate the expected value of any 

function using the following method: 

𝐸𝐷(𝑓) =
1

𝑀
∑ 𝑓(𝜉[𝑚])

𝑀

𝑚=1

 𝑤ℎ𝑒𝑟𝑒 𝛭 ∶ 𝑡ℎ𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑠𝑒𝑡  

Our goal is to estimate queries of the form 𝑃(𝒀 =  𝒚), where the only requirement is to know 

the number of particles that contain the 𝒚. The probability can be defined as follows: 

𝑃𝐷(𝒚) =
1

𝑀
∑ 𝑰{𝑦[𝑚] = 𝒚}

𝑀

𝑚=1

 

Where the function 𝑰 refers to an indicator function, defined as: 

{
1 , 𝑖𝑓 𝑦[𝑚] 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑡ℎ𝑒 𝒚

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Considering the complexity of the algorithm of Forward Sampling, assuming 𝛭 corresponds 

to the total number of generated full particles, 𝑛 = |𝒳| denotes to the number of nodes of 

the network, 𝑝 = max
𝑖

|𝑃𝑎𝑟(𝑋𝑖)| denotes the maximum number of parents nodes for any 

variable, and 𝑑 = max
𝑖

|𝑉𝑎𝑙(𝑋𝑖)| denotes the maximum number of values for any variable, 

then the complexity of the algorithm is 𝛰(𝑀 ∙ 𝑛 ∙ 𝑝 ∙  𝑙𝑜𝑔𝑑). This considers that the sampling 

for any variable is 𝛰(𝑙𝑜𝑔𝑑) and the indexing time required to retrieve the values of parents 

nodes for any distribution using the appropriate data structure is 𝛰(𝑝). 

 

Sampling distribution 

Regarding the scope of this thesis, our focus is on categorical random variables. We assume a 

multinomial distribution 𝑃(𝑋) with values 𝑉𝑎𝑙(𝑋)  =  {𝑥𝑖 , . . . , 𝑥𝑘}, which is defined by the 

parameters 𝜃1, … , 𝜃𝑘, respectively. The sampling process (Figure 10) can be summarized in 

the following three steps: 

Figure 10: Sampling of a multinomial distribution 

1. Initially, we generate a uniformly sampled value 𝒔 from the interval [0,1]. 

2. Then, we divide the interval into 𝑘 sub-intervals: [0, 𝜃1), [𝜃1, 𝜃1 + 𝜃2), … where i 

sub-interval is defined as [∑ 𝜃𝑗 𝑖−1
𝑗=1 , ∑ 𝜃𝑗

𝑖
𝑗=1 ) 

3. If the sampled value 𝒔 falls within the 𝒊 − 𝒕𝒉 sub-interval, the generated value is 

𝑥𝑖( the interval boundaries can be determined using the method of binary search 

in 𝛰(𝑙𝑜𝑔𝑘) time). 



January 2023                            29 | P a g e  

 

Estimation Quality Analysis  

The quality of the estimation obtained from the sampling method, which measures the 

proximity to the joint ground truth distribution of Bayesian Network 𝒢, is largely determined 

by the number of generated particles. In cases where we aim to quantify the error guarantees 

of the estimation, we can achieve using the following theorem. 

We assume that 𝑃(𝑌 = 𝑦) represents the ground truth joint distribution, derived from the 

true values of parameters, 𝑃𝐷(𝑌 = 𝑦) denotes the distribution obtained from the set of 

generated particles, which is equivalent to the distribution obtained through the MLE 

algorithm. 𝛭 represents the number of particles. 

Theorem 1[1, Corollary 12.2]: Assuming 𝛭 ≥
3 ln(

2

𝛿
)

𝑃(𝑦)𝜀2, we can provide an (ε, δ)-approximation 

of the joint ground truth distribution as follows: 

(1 − 𝜀) ≤
𝑃𝐷(𝑦)

𝑃(𝑦)
≤ (1 + 𝜀) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝛿 

 

To guarantee an ε relative error with an error probability up to δ from the joint ground truth 

distribution, the size of the sample depends logarithmically on 
1

𝛿
 , quadratically on 

1

𝜀
 and 

linearly on 1/𝑃(𝑦). However, a problem with this approach arises when the distribution 𝑃(𝑦) 

is unknown, making it difficult to determine the appropriate sample size for achieving a 

“good” estimation quality. While there are other error guarantees [1, Ch. 17] for the 

estimation, our main concern is the relative error guarantees. 

An extension of the previous theorem involves assuming the prior learning of the parameters 

of local CPDs of Bayesian Network 𝒢 , which is defined as follows: 

Theorem 2[1, Corollary 17.3]: Under the assumptions 𝑃( 𝑋𝑖  | 𝑃𝑎𝑟(𝑋𝑖) ) ≥ 𝜆 ∀𝑖, 𝑋𝑖 , 𝑃𝑎𝑟(𝑋𝑖) 

and 𝛭 ≥
(1+𝜀)2

2𝜆2(𝑑+1)𝜀2 log
𝑛𝐽𝑑+1

𝛿
,  the following equation holds: 

𝑒−𝑛𝜀 ≤
𝑃𝐷(𝑦)

𝑃(𝑦)
≤ 𝑒𝑛𝜀  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝛿 

where 𝐽 = 𝑚𝑎𝑥𝑖=1
𝑛  𝐽𝑖 𝜇𝜀 𝐽𝑖 = |𝑉𝑎𝑙(𝑋𝑖)|, 𝑑 = 𝑚𝑎𝑥𝑖=1

𝑛 |𝑃𝑎𝑟(𝑋𝑖)| και 𝑛 = |𝒳|. 

 

In this scenario, the required number of particles to ensure a “good” estimation depends not 

only on ε, δ but also on 𝐽, 𝑑, 𝑛 which take into account the structure of Bayesian Network 𝒢. 

To ensure the correctness and quality of the estimation, it is necessary to bound, if feasible 

the values of joint truth probability of queries (e.g., quantifying  𝑃(𝑌) ≥ 0.1 for all the 

queries). This allows for determining an appropriate size of the query set to control the 

distribution. 

 



January 2023                            30 | P a g e  

 

2.5 Learning parameters 
 

Our goal is to learn the parameters of the joint probability distribution of the Bayesian 

Network Structure 𝒢(𝒳, ℰ). Given a known network structure known, we attempt to learn the 

parameters from the dataset 𝐷. To accomplish this, we utilize the Maximum Likelihood 

Estimation (MLE) algorithm, which will be discussed and analyzed below. The dataset consists 

of instantiations of full assignments confirming the supervised setting. 

The objective is to construct a model 𝑀, which falls under the category of parametric models 

and is characterized by a parameter set 𝜃. Our primary concern is that the obtained joint 

probability distribution closely matches the distribution of the dataset. Therefore, the 

selection of parameters is defined in such a way that the available training instances achieve 

the highest probability, making them the most probable. 

2.5.1 Maximum Likelihood Estimation (MLE) 
Assuming a Bayesian Network Structure 𝒢(𝒳, ℰ) with the set of variables corresponds to 𝒳 =

{𝑋1, … , 𝑋𝑛}. 

Given a dataset 𝐷 = { 𝜉[1], … , 𝜉[𝛭] }(training dataset) consisting of independent and 

identically distributed(i.i.d.) samples from the joint probability distribution 𝑃(𝒳) of 𝒢(See. 

Chapter 2.4). Each 𝜉[𝑖] 𝑓𝑜𝑟 𝑖 ∈ {1, … , 𝑀} represents an instantiation of full assignments of 𝒳. 

Our objective is to determine the set of parameters 𝜃 that define the required parameters for 

each CPD of each variable. 

The first step in defining the likelihood function of parameters 𝜃 given the dataset 𝐷, is as 

follows: 

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∶ 𝐿(𝜃 ∶ 𝐷) =  𝑃(𝐷|𝜃) 

Similarly, we can define the log-likelihood function which is commonly used (usually we 

calculate log P(𝜉|𝜃) to avoid overflow problems), as follows: 

𝑙𝑜𝑔 − 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∶ 𝑙(𝜃 ∶ 𝐷) = 𝑙𝑜𝑔𝑃(𝐷|𝜃) 

It is worth mentioning that the negated form of the log-likelihood is referred to as the loss 

function, which measures the loss given the learning parameters for any instance 𝜉. 

𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ∶  𝑙𝑜𝑠𝑠(𝜉|𝜃) =  −𝑙𝑜𝑔𝑃(𝜉|𝜃) 

Regarding the fact that the dataset 𝐷 = { 𝜉[1], … , 𝜉[𝛭] } consists of i.i.d instances, we can 

redefine the likelihood function, as follows: 

𝐿(𝜃 ∶ 𝐷) =  𝑃(𝐷|𝜃) =  ∏ 𝑃( 𝜉[𝑖] ∶  𝜃)

𝑀

𝑖=1

 

To maximize the likelihood function, we want to select the parameters 𝜃 that maximize the 

likelihood function. Assuming 𝜃 represents the set that maximizes the likelihood function, the 

following equation holds: 

Maximum Likelihood Estimation: 𝐿(𝜃 ∶ 𝐷) = 𝑚𝑎𝑥𝜃𝜖𝛩𝐿(𝜃 ∶ 𝐷) 

𝑤ℎ𝑒𝑟𝑒 𝛩 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝑠𝑝𝑎𝑐𝑒 



January 2023                            31 | P a g e  

 

 

Exploiting the Bayesian network structure, we can define the likelihood function, as follows: 

𝐿(𝜃 ∶ 𝐷) =  𝑃(𝐷|𝜃) =  ∏ 𝑃𝐺(𝜉[𝑖] ∶ 𝜃)

𝑀

𝑖=1

 

 =  ∏ ∏ 𝑃(𝑥𝑖[𝑚] | 𝑃𝑎𝑟(𝑋𝑖)[𝑚] ∶ 𝜃) 

𝑛

𝑗=1

𝑀

𝑖=1

 

     =  ∏ [ ∏ 𝑃(𝑥𝑖[𝑚] | 𝑃𝑎𝑟(𝑋𝑖)[𝑚] ∶ 𝜃)

𝑚

 ]

𝑖

 

Each factor in brackets denotes the condition likelihood function of the random variable 𝑋𝑖  

given 𝑃𝑎𝑟(𝑋𝑖). Assuming 𝜃𝑋𝑖
 denotes the set of parameters that defines the CPD 

𝑃(𝑋𝑖|𝑃𝑎𝑟(𝑋𝑖)), the following equation holds: 

𝐿(𝜃 ∶ 𝐷) = ∏ 𝐿𝑖(𝜃𝑋𝑖
∶ 𝐷)

𝑖

 

Each factor denotes the local likelihood of the random variable 𝑋𝑖  and is defined as follows: 

𝐿𝑖(𝜃𝑋𝑖
∶ 𝐷) =   ∏ 𝑃(𝑥𝑖[𝑚] | 𝑃𝑎𝑟(𝑋𝑖)[𝑚] ∶ 𝜃𝑋𝑖

)

𝑚

 

The latter property is known as the global decomposability of the likelihood function. 

Assuming that each 𝜃𝑋𝑖
 is independent of 𝜃𝑋𝑗

 for each ≠ 𝑗 with 𝑖, 𝑗 ∈ {1, … , 𝑛}, we can 

maximize each local likelihood function independently from the others and combine them to 

obtain the MLE. This property, along with the property of local decomposability constitutes 

the ideal scenario to apply in a distributed environment.  

Given a dataset 𝐷 = { 𝜉[1], … , 𝜉[𝛭] } and the corresponding Bayesian Network Structure 

𝒢(𝒳, ℰ), assuming 𝜃𝑋𝑖
 is independent of 𝜃𝑋𝑗

 for each 𝑖 ≠ 𝑗 with 𝑖, 𝑗 ∈ {1, … , 𝑛} and 𝜃𝑋𝑖
 

maximizes the local likelihood function 𝐿𝑖(𝜃𝑋𝑖
∶ 𝐷) of random variable 𝑋𝑖  then the set 𝜃 =

{𝜃𝑋1
 , … , 𝜃𝑋𝑛

} maximizes the το likelihood function 𝐿(𝜃 ∶ 𝐷). 

Beyond the property of global decomposability of the likelihood function, the property of local 

decomposability also holds. Given the tabular CPD 𝑃(𝑋𝑖  | 𝑃𝑎𝑟(𝑋𝑖) ) of the random variable 𝛸𝑖  

with 𝑃𝑎𝑟(𝑋𝑖) = 𝑼, which is our primary concern, we can redefine the local likelihood function 

in the following manner: 

𝐿𝑖(𝜃𝑋𝑖
∶ 𝐷)   =   ∏ 𝑃(𝑥𝑖[𝑚] | 𝑃𝑎𝑟(𝑋𝑖)[𝑚] ∶ 𝜃𝑋𝑖

)

𝑚

  

    =   ∏ 𝜃𝑥𝑖[𝑚] | 𝑃𝑎𝑟(𝑋𝑖)[𝑚]   

𝑚

 

             =  ∏ [ ∏ 𝜃𝑥𝑖| 𝒖
𝑀[𝒖,𝑥𝑖]

𝑥∈𝑉𝑎𝑙(𝑋𝑖)

 ]

𝒖∈𝑉𝑎𝑙(𝑼)

 



January 2023                            32 | P a g e  

 

Where 𝑀[𝒖, 𝑥𝑖] represents the counter of the combination of values 𝑋𝑖 = 𝑥𝑖 and 𝑃𝑎𝑟(𝑋𝑖) =

𝒖 in 𝐷. 

Considering the latter equation, we achieve to concentrate all the references of the parameter 

𝜃𝑥𝑖|𝒖 for each 𝑥𝑖 ∈ 𝑉𝑎𝑙(𝑋𝑖) together. We attempt to maximize the parameters 𝜃𝑥𝑖|𝒖 taking 

into account the restriction ∑ 𝜃𝑥𝑖|𝒖 = 1 for each 𝒖 ∈ 𝑉𝑎𝑙(𝑼). The latter property 

demonstrates the property of local decomposability, now we can maximize the parameters 

𝜃𝑥𝑖|𝒖 for each 𝒖 ∈ 𝑉𝑎𝑙(𝑼) independently from the others. 

 

Maximum Likelihood Estimate 

We can prove that the maximum likelihood estimate 𝜃𝑋𝑖
 of 𝜃𝑋𝑖

 of tabular CPD 

𝑃(𝑋𝑖  | 𝑃𝑎𝑟(𝑋𝑖) ), which predisposes that the likelihood function is derivable, defined as 

follows: 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ∶  𝜃𝑋𝑖
=

𝐶𝑖(𝑥𝑖, 𝑥𝑖
𝑝𝑎𝑟

)

𝐶𝑖(𝑥𝑖
𝑝𝑎𝑟

)
   

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥𝑖 ∈ 𝑉𝑎𝑙(𝑋𝑖), 𝑥𝑖
𝑝𝑎𝑟

∈ 𝑃𝑎𝑟(𝑋𝑖) 

 

Where 𝐶𝑖(𝑥𝑖, 𝑥𝑖
𝑝𝑎𝑟

) denotes the number of instances (𝑋𝑖 = 𝑥𝑖, 𝑃𝑎𝑟(𝑋𝑖) = 𝑥𝑖
𝑝𝑎𝑟

) in 𝐷 and 

𝐶𝑖(𝑥𝑖
𝑝𝑎𝑟

) denotes the number of instances (𝑃𝑎𝑟(𝑋𝑖) = 𝑥𝑖
𝑝𝑎𝑟

) in 𝐷. To obtain the maximum 

likelihood estimate the only requirement is to maintenance the counters 𝐶𝑖(𝑥𝑖 , 𝑥𝑖
𝑝𝑎𝑟

) and 

𝐶𝑖(𝑥𝑖
𝑝𝑎𝑟

) for each random variable 𝑋𝑖  of the network and for each 𝑥𝑖 ∈ 𝑉𝑎𝑙(𝑋𝑖) and 𝑥𝑖
𝑝𝑎𝑟

∈

𝑉𝑎𝑙(𝑃𝑎𝑟(𝑋𝑖)). Algorithm 2 summarizes the MLE algorithm. 

 

Algorithm 2: Maximum likelihood Estimation (MLE)  

Input:  

Bayesian Network Structure 𝒢(𝒳, ℰ)  

𝑫 = { 𝜉[1], … , 𝜉[𝛭] } of full assignments 

Output: 

𝜃 = {𝜃𝑋1
̂  , … , 𝜃𝑋𝑛

̂ }   

   

1. // Count 

2. Foreach 𝜉[1] from 𝑫 

3.   Foreach 𝑋𝑖 from 𝒳 

4.     Increment count( 𝑥𝑖 , 𝑥𝑖
𝑝𝑎𝑟

 )  

5.     Increment count(𝑥𝑖
𝑝𝑎𝑟

 ) 

6.   End 

7. End 

8.  

9. // Estimation 

10. Foreach 𝑋𝑖 from 𝒳 

11.   Return 𝜃𝑋𝑖
̂ = 𝐹𝑖(𝑥𝑖, 𝑥𝑖

𝑝𝑎𝑟
) / 𝐹𝑖(𝑥𝑖

𝑝𝑎𝑟
) 

12. End   

 



January 2023                            33 | P a g e  

 

Given a Bayesian Network Structure 𝒢(𝒳, ℰ), the MLE of the joint probability distribution can 

be defined as follows: 

𝑃(𝒳) =  ∏ 𝜃𝑋𝑖

𝑛

𝑖=1

=  ∏
𝐶𝑖(𝑥𝑖, 𝑥𝑖

𝑝𝑎𝑟
)

𝐶𝑖(𝑥𝑖
𝑝𝑎𝑟

)

𝑛

𝑖=1

 

 

 

MLE consistency 

The algorithm MLE also holds the property of consistency [1, Theorem 16.1]. Given a sequence 

of i.i.d samples 𝐷𝑀 = {𝜉[1], . . , 𝜉[𝛭]} from the distribution 𝑃(𝒳), then the property of 

consistency demonstrates as follows: 

lim
𝑀→ ∞

𝑃𝐷𝑀
(𝐴) = 𝑃(𝐴) 

For large datasets, the empirical distribution approaches the obtained distribution of the MLE 

algorithm that is close enough to the initial distribution 𝑃(𝒳) with high probability, specifically 

the probability convergences to 1 as 𝑀 →  ∞. 

 

 

Data fragmentation and overfitting  

One of the restrictions of the learning parameters of a Bayesian Network given training 

instances, constitutes the fact that an increase in the number of parents nodes for any node 

leads to an exponential increase in parents assignments of the node and simultaneously leads 

to an exponential decrease to the number of data for each parent assignment. This 

phenomenon is denoted as data fragmentation, where the dataset is divided into a large 

number of small subsets. In case, the size of the dataset is limited then someone subset is also 

limited and therefore this scenario can be led to overfitting (a large number of zeros in 

distribution). 

 

 

 

2.6 Laplace Smoothing 
 

An issue during the process of the MLE algorithm in both Bayesian Network and Naïve Bayes 

Classifier arises when the size of training instances is very limited (of course, this can also 

occur when the size of the dataset is large but combined usually with highly skewed 

distributions), is that the dataset may not be representative of the joint probability 

distribution, as it may lack data for certain variables in the network, particularly those with 

small parameter values 𝜃𝑋𝑖
. 



January 2023                            34 | P a g e  

 

When we encounter situations where there is no data available for specific values of network 

nodes, estimating queries on the joint probability distribution becomes challenging. Treating 

these missing parameters as zero does not accurately reflect the truth, as it does not 

necessarily mean that these values do not exist. The problem becomes apparent when we 

have no data for a non-zero parameter 𝜃. 

Attempting to answer user-posed queries involving values or a combination of values that 

have small probabilities and small 𝜃 values (usually occurring when the queries refer to highly 

unlikely queries, queries quite small joint probability distribution that is unlikely to happen) 

leads to a zero estimation. Consequently, this results in a non-pragmatic scenario where the 

estimation of joint probability distribution does not reflect the truth due to the absence of 

data for certain parameters. 

To address this problem, one effective approach is the widely known method of Laplace 

smoothing. Laplace smoothing can be applied in both zero and non-zero parameters although 

our primary focus is on the zero parameters. The method works as follows: for each zero 

parameter, we add 𝜆 (𝑝𝑠𝑒𝑢𝑑𝑜𝑐𝑜𝑢𝑛𝑡) occurrences of the parameter value regardless of 

whether the value has been observed in the dataset. Since the parameter 𝜃𝑋𝑖
 represents a 

probability, it is necessary to normalize it by the number of values of variable  𝑋𝑖  and 

multiplying it by the value of parameter 𝜆. Assuming 𝜃𝑋𝑖
 corresponds to the CPD 

𝑃(𝑋 = 𝑥𝑖 | 𝑃𝑎𝑟(𝑋𝑖)) of the random variable 𝑋𝑖, the following equation holds when Laplace 

Smoothing is applied: 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 𝑆𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 

𝑃(𝑋 = 𝑥𝑖 | 𝑃𝑎𝑟(𝑋𝑖)) =
𝑐𝑜𝑢𝑛𝑡(𝑋 = 𝑥𝑖  𝑎𝑛𝑑 𝑃𝑎𝑟(𝑋𝑖  )) +  𝜆

𝑐𝑜𝑢𝑛𝑡(𝑃𝑎𝑟(𝑋𝑖 )) + 𝜆 ∙ 𝑉𝑎𝑙(𝑋𝑖)
  𝑤ℎ𝑒𝑟𝑒 𝜆 > 0  

We can demonstrate the application of Laplace Smoothing using the following examples. 

Assuming a biased coin with two faces {𝐻𝑒𝑎𝑑(𝐻), 𝑇𝑎𝑖𝑙(𝑇)} and one toss which resulted in 

𝐻𝑒𝑎𝑑. Estimating the parameters given the result of the previous toss and the MLE algorithm, 

then: 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 

𝑝(𝐻) =
1

1
= 1 , 𝑝(𝑇) =

0

1
= 0 

 

Regarding both of estimations, none of them are consistent. This example demonstrates the 

problem of overfitting of the MLE algorithm which confirms the fact when the size of the 

dataset is small and the number of parameters is quite large then the MLE leads to overfitting 

(most of the parameters are considered as zero which does not reflect the reality). 

The following equation holds when Laplace Smoothing is applied and assuming 𝜆 = 1: 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 𝑆𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 

𝑝(𝐻) =
1 + 1

1 + 2
=

2

3
 , 𝑝(𝑇) =

0 + 1

1 + 2
=

1

3
 

 



January 2023                            35 | P a g e  

 

The application of Laplace Smoothing leads to a more pragmatic scenario and simultaneously 

results in preventing the problem of overfitting, even when the dataset is quite small.  

By varying the value of 𝜆 parameter, we can define the added smoothing-regularization on 

parameter. The larger the value of 𝜆, the more the distribution approaches the uniform 

distribution. Regarding zero parameters, both the numerator and denominator of the 

previous equation are zero regardless of the value of 𝜆. In this case, the distribution accurately 

approaches the uniform distribution. 

Although, in most cases, the numerator is zero. Considering the experimental evaluation, the 

value of 𝜆 where the quality of the obtained estimation is quite “good” is achieved when 𝜆 =

1. 

Another advantage of this method is the effect of the parameter based on the size of the 

dataset. As the dataset size increases, the influence of  𝜆  diminishes, which is desirable since 

a larger dataset is more reliable. When considering a zero parameter, as soon as data about it 

is detected, it is converted into a non-zero parameter. This marks the point at which the usage 

of the Laplace Smoothing method is discontinued. In the context of this thesis, the Laplace 

Smoothing method is exclusively applied to zero parameters in both Bayesian Networks and 

Naïve Bayes Classifier. Otherwise, the parameter estimation relies solely on the dataset. 

 

2.7 Distributed Continuous Model 
 

This section describes the mode used throughout this thesis, namely the Continuous 

Distributed Monitoring Model [16]. The model represents an intersection between the 

communication model, where 𝑘 ≥ 2 sites exist and our objective is the one-shot computation 

of a specific function, and the data stream model where 𝑘 = 1(only one site) and our objective 

is the continuous monitoring of a specific function. 

This model simulates most of the learning tasks over big data streaming systems, which 

involve enormous volumes of datasets (on the order of Petabytes). These datasets are 

streaming and distributed and we aim to ensure real-time responses. 

The Continuous Distributed Monitoring Model consists of a set of observers, each of which 

tracks only one part of the observations. The objective is to estimate a function over the union 

of the observation for each time.   

For instance, the function can be the counting of the observation set (count-tracking problem 

– which is our primary concern), where the function represents a linear and monotonic 

increasing function. Of course, there are more complex functions, such as the second 

frequency moment 𝐹2 which can be applied to various situations, such as estimating join sizes. 

Our goal is to minimize the communication cost among observes(communication-efficient). To 

achieve this, it is usually necessary to provide an approximate estimation of the corresponding 

function (approximate answers). 



January 2023                            36 | P a g e  

 

We assume that the observation set for each observer represents a high-speed, high-volume, 

and high-throughput data stream so approaches such as periodic polling or centralization of 

streams may be infeasible. 

Specifically, we assume 𝑘 sites (or workers) and the set of sites denoted as 𝑆 = {𝑆1, . . , 𝑆𝑘}. 

Each site 𝑆𝑖 receives a stream of observations with varied rates probably. Also, we assume 

that the 𝐴𝑖(𝑡) corresponds to a multiset of elements (bag of elements) that have been 

received from the site 𝑆𝑖 up to the time 𝑡 and 𝐴(𝑡) =  ⨄ 𝐴𝑖(𝑡)𝑖  with 𝑖 ∈ {1, … , 𝑘} which 

corresponds to the union of stream of all sites, with ⨄ denotes multiset addition. 

 

Figure 11: Distributed Continuous Model 

 

Beyond the individual sites, there exists a designated site known as the Coordinator. The 

Coordinator communicates directly with each site 𝑆𝑖 and therefore, there is a two-way 

communication channel between the Coordinator and each one of the 𝑘 sites (Figure 11). 

Although there is no direct communication channel among the sites themselves, this does not 

pose a limitation. By utilizing the Coordinator as an intermediate node, sites can communicate 

through the Coordinator. The downstream communication cost refers to the number of 

messages sent from the sites to the Coordinator, while the upstream communication cost 

refers to the number of messages sent from the Coordinator to the sites. 

Our goal is to monitor the function of the union of the data streams. We except the 

Coordinator to continuously maintain the value 𝑓(𝐴(𝑡)) for any given time 𝑡. For instance, in 

the case of the count-tracking problem, the function can be defined as follows: 𝑓(𝐴(𝑡)) =

|𝐴(𝑡)|. 



January 2023                            37 | P a g e  

 

Our primary focus is on value monitoring, where at any time 𝑡 we aim to provide an estimation 

𝑓(𝐴(𝑡)) of the function 𝑓(𝐴(𝑡)) while also ensuring error guarantees. We seek an ε,δ-

approximation of the function 𝑓(𝐴(𝑡)) for any given time, which can be defined as follows: 

(1 − 𝜀) ∙ 𝑓(𝐴(𝑡)) ≤  𝑓(𝐴(𝑡)) ≤ (1 + 𝜀) ∙ 𝑓(𝐴(𝑡)) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝛿 , ∀ 𝑡  

The analysis of the MLE algorithm reveals a crucial component: the maintenance of the 

necessary counters for each CPD of the network, considering the Continuous Distributed 

Model. We refer to these counters as distributed counters (See Chapter 4.1.1). Additionally, 

the maintenance of distributed counters is accompanied by minimal communication cost 

(communication efficient). This problem is widely known as the count-tracking problem and 

has been discussed analytically in [17] and [20]. The count-tracking problem can be viewed as 

the maintenance of 𝐹1 frequency moment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



January 2023                            38 | P a g e  

 

Chapter 3: 

Problem statement 
 

3.1 Problem definition 

 

The general idea of the problem is to design a system that is capable of maintaining the 

necessary distributed counters with minimal communication cost(communication-efficient) 

while providing error guarantees for the maintained model. These systems consist of massive, 

dynamic, high-throughput, and distributed data sources, where centralizing datasets may be 

inefficient and infeasible due to the enormous communication cost.  

We aim to design a system capable of effectively maintaining a graphical model over 

distributed and streaming datasets, with a specific emphasis on providing an accurate 

approximation of the Maximum Likelihood Estimate (MLE) at any given time. 

The only requirement to obtain the maximum likelihood estimate is to have the counters for 

the parameters defined for each CPD in the network. We aim to maintain a collection of 

distributed counters necessary for estimating the MLE. However, in a distributed environment, 

utilizing EXACT counters (See Chapter 4.1.1), where each site sends an update message to the 

Coordinator whenever receives an event, communication cost becomes the bottleneck of the 

entire system. 

To address this problem, a tradeoff between efficiency and estimation quality is needed. 

Instead of using Exact MLE, which incurs substantial communication cost, it is preferable to 

utilize an accurate approximate of MLE with lower communication cost. By leveraging the 

property of independence among the parameters and appropriately allocating the available 

error budget to different and independent parameters (known as slack allocation problem), 

that firstly provides the error of joint probability distribution remains within acceptable 

bounds and secondly, the communication cost is as little as possible, then we can provide an 

accurate approximate of MLE with minimal communication cost. 

Using both the first approach which involves a collection of approximate distributed counters 

treating each counter individually, and the proposed approach utilizing the method of 

Functional Geometric Protocol (FGM), we can achieve our objective. This involves the 

utilization of the BASELINE, UNIFORM, and NON_UNIFORM [18] algorithms, which define the 

appropriate way to divide the available error budget and are discussed and analyzed below. 

Given a Bayesian Network structure 𝒢(𝒳, ℰ), the probability 𝑃̂(𝒳) represents the EXACTMLE 

of the joint probability distribution of the network 𝒢. Furthermore, given an approximation 

factor 𝜀, where 𝜀 ∈ [0,1] , an ε-approximation of MLE is the joint probability distribution 𝑃̃(𝒳) 

for each 𝒙 ∈ 𝑉𝑎𝑙(𝒳), if and only if the following equation holds: 

    𝜀 − 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝐿𝐸 

         𝑒−𝜀 ≤
𝑃̃(𝒙)

𝑃̂(𝒙)
≤ 𝑒𝜀 



January 2023                            39 | P a g e  

 

Similarly, given an additional parameter δ, where δ ∈ [0,1] , then 𝑃̃(𝒳) refers to an (ε,δ)-

approximation, if and only if the following equation holds: 

(𝜀, 𝛿) − 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝐿𝐸 

𝑒−𝜀 ≤
𝑃̃(𝒙)

𝑃̂(𝒙)
≤ 𝑒𝜀  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝛿 

 

Our objective is to maintain an (ε,δ)-approximation of MLE, at any given time. Given a 

Bayesian Network structure 𝒢(𝒳, ℰ), the EXACTMLE of the joint probability distribution 𝑃̃(𝒳) 

(See Chapter 2.5) can be defined as follows: 

𝑃̃(𝒳) =  ∏ 𝜃𝑋𝑖

𝑛

𝑖=1

=  ∏
𝐶𝑖(𝑥𝑖, 𝑥𝑖

𝑝𝑎𝑟
)

𝐶𝑖(𝑥𝑖
𝑝𝑎𝑟

)

𝑛

𝑖=1

 

 

Where the 𝐶𝑖(𝑥𝑖, 𝑥𝑖
𝑝𝑎𝑟

) represents the number of events (𝑋𝑖 = 𝑥𝑖, 𝑃𝑎𝑟(𝑋𝑖) = 𝑥𝑖
𝑝𝑎𝑟

), and 

𝐶𝑖(𝑥𝑖
𝑝𝑎𝑟

) represents the number of events (𝑃𝑎𝑟(𝑋𝑖) = 𝑥𝑖
𝑝𝑎𝑟

). 

Assuming 𝛢𝑖(𝑥𝑖, 𝑥𝑖
𝑝𝑎𝑟

) , 𝛢𝑖(𝑥𝑖
𝑝𝑎𝑟

) represents the approximate version of the distributed 

counters 𝐶𝑖(𝑥𝑖, 𝑥𝑖
𝑝𝑎𝑟

), 𝐶𝑖(𝑥𝑖
𝑝𝑎𝑟

), respectively, for any input vector 𝒙 = [𝑥1, … , 𝑥𝑛] , and given 

an approximation factor ε, we want the following statement to hold at any time: 

𝑒−𝜀 ≤
𝑃̃(𝒙)

𝑃̂(𝒙)
=  ∏ ( 

𝐴𝑖(𝑥𝑖, 𝑥𝑖
𝑝𝑎𝑟

)

𝐶𝑖(𝑥𝑖, 𝑥𝑖
𝑝𝑎𝑟

)
∙

𝐶𝑖(𝑥𝑖
𝑝𝑎𝑟

)

𝐴𝑖(𝑥𝑖
𝑝𝑎𝑟

)
 )

𝑛

𝑖=1

 ≤ 𝑒𝜀 

 

Definition of the Classification Problem 

Beyond the scope of the Bayesian Networks, we focus on a special case of them, namely the 

Naïve Bayes Classifier. Given the collection of the approximate distributed counters, we need 

to redefine the Classification problem. Assuming a Naïve Bayes Classifier 𝒢(𝒳, ℰ) and an 

approximation factor ε, for any input vector 𝒙 (or known as evidence), the class label 𝑐𝑖 resolve 

the Bayesian classification problem with ε error, if: 

𝑃̂(𝐶 = 𝑐𝑖|𝒙) ≥ (1 − 𝜀) ∙ 𝑚𝑎𝑥𝑐𝑖∈𝑉𝑎𝑙(𝐶)𝑃̂(𝐶 = 𝑐𝑖|𝒙) 

We choose the class label 𝑐𝑖 that the conditional probability is close to the highest probability. 

Given an (ε,δ)-approximation of the MLE of the joint probability distribution of a Naïve Bayes 

Classifier, the class label 𝑐𝑖 resolves the Bayesian Classification problem with ε error [18, 

Lemma 13]. 

Consequently, at any time we want an (ε,δ)-approximation of the MLE of the joint probability 

distribution of the Bayesian Network over the distributed continuous model while using the 

minimal communication cost (communication efficient). 

 



January 2023                            40 | P a g e  

 

3.2 The general approach 
 

This section describes the general approach used in both the first approach (See Chapter 4.1) 

and the second approach (See Chapter 4.2). The general approach can be summarized in the 

following four algorithms. 

The first algorithm is the INITIALIZATION (Algorithm 1) algorithm. This algorithm is used by the 

sites, including the Coordinator. It is executed first and is responsible for initializing all the 

approximated distributed counters required from each CPD of the Bayesian Network, which is 

necessary for estimating the MLE of the joint probability distribution of the network. The first 

parameter refers to the Bayesian Network to be used, the second parameter refers to the 

type of the approximate distributed counter(type_counter) that will be used regarding the first 

approach, and refers to the type of the frequency vector that will be used considering the 

second approach. The last parameter, schema_error, specifies the algorithm to be used and 

defines the appropriate value of the approximation factor ε for each of the available counters, 

choosing from the BASELINE, UNIFORM, and NON_UNIFORM algorithms. 

 

 

Algorithm 1: INITIALIZATION  

Input:  

type_counter: corresponds to one of the four available algorithms (RANDOMIZED, 

DETERMINISTIC, EXACT, CONTINUOUS) 

schema_error: corresponds to one of the three available algorithms (BASELINE, 

UNIFORM, NON_UNIFORM) 

Bayesian Network Structure 𝒢(𝒳, ℰ) , where 𝒳 = {𝑋1, . . , 𝑋𝑛} are the nodes of the 

Bayesian Network 

     

1. Foreach 𝑋𝑖 from 𝒳 

2.   // Generate all the distributed counters from the node 𝑋𝑖 based on the type of counter 

3.   GENERATE_DIST_COUNTERS (type_counter, 𝑋𝑖) 

4.    

5.   // Initialize the distributed counters based on the error schema  

6.   Foreach 𝛢𝑖(𝑥𝑖 , 𝑥𝑖
𝑝𝑎𝑟

) from 𝑋𝑖 ∩ 𝑃𝑎𝑟(𝑋𝑖) 

7.    INITIALIZE_DIST_COUNTER (𝛢𝑖(𝑥𝑖 , 𝑥𝑖
𝑝𝑎𝑟

), schema_error) 

8.   Foreach 𝛢𝑖(𝑥𝑖
𝑝𝑎𝑟

) from 𝑃𝑎𝑟(𝑋𝑖) 

9.    INITIALIZE_DIST_COUNTER (𝛢𝑖(𝑥𝑖
𝑝𝑎𝑟

), schema_error) 

10. End 

 

 

The second algorithm is responsible for managing the events and is called the UPDATE 

algorithm (Algorithm 2). It is exclusively used by the sites to handle the received data stream 

of training instances. Its objective is to manage the corresponding input vector while providing 

the necessary increments to the distributed counters. 

 

 

 

 



January 2023                            41 | P a g e  

 

Algorithm 2: UPDATE  

Input: 𝒙 = < 𝑥1, … , 𝑥𝑛 > is a full particle of nodes from the Bayesian Network 

     

1. Foreach 𝑥𝑖 from 𝒙  

2.  

3.   If( 𝑋𝑖 has parents) then 

4.    // Get the counters to correspond to the parents’ nodes of 𝑋𝑖  

5.    GET_COUNTER (𝑥𝑖
𝑝𝑎𝑟

)   

6.    INCREMENT_DIST_COUNTER (𝑥𝑖
𝑝𝑎𝑟

) 

7.  End 

8.  

9.   // Get the counters to correspond to the 𝑋𝑖 node 

10.   GET_COUNTER (𝑥𝑖) 

11.  
12.   // Increment the distributed counters for the 𝑋𝑖 node 

13.   INCREMENT_DIST_COUNTER (𝑥𝑖) 

 

 

 
The algorithm responsible for handling the messages between the sites and the Coordinator 
and vice versa is called the HANDLE_MESSAGE algorithm (Algorithm 3). It is used by both sides, 
the sites while receiving messages from the Coordinator and the Coordinator while receiving 
messages from the sites (two-way communication channel). Depending on the type of 
message (type_message), it performs the corresponding action. The action usually involves 
either sending a message (such as broadcasting a value from the Coordinator to sites) or 
updating the value of a variable. Both the type of message and the subsequent sequence of 
actions are defined by the corresponding approach. 
 
 

 

Algorithm 3: HANDLE_MESSAGE  

Input:  

type_message: corresponds to one of the available types of messages 

message: corresponds to a message  

     

1. // Handle the message based on the type of it 

2. HANDLE_MESSAGE (type_message) 

3. UPDATE_COUNTERS () 

 

 

Finally, the algorithm responsible for estimating probability queries is the ESTIMATE algorithm 

(Algorithm 4), which is used exclusively by the Coordinator. When receiving queries, the 

Coordinator only needs to estimate the value of the joint probability distribution of the query. 

 

 

 

 

 

 



January 2023                            42 | P a g e  

 

Algorithm 4: ESTIMATE  

Input: 𝒙 = < 𝑥1, … , 𝑥𝑛 > is a full particle of nodes from the Bayesian Network 

Output: Return the estimated probability from the event   

     

1. Foreach 𝑥𝑖 from 𝒙  

2.   // Get the counters for the parameter 𝜃𝑋𝑖
 

3.   GET_COUNTER(𝑥𝑖, 𝑥𝑖
𝑝𝑎𝑟

) 

4.   GET_COUNTER(𝑥𝑖
𝑝𝑎𝑟

) 

5.  

6.   // Estimate the parameter for the specific 𝑋𝑖 

7.   ESTIMATE_PAR (𝜃𝑋𝑖
) 

8.   UPDATE_EST_PROBABILITY (𝜃𝑋𝑖
) 

9. End 

10. Return EST_PROBABILITY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



January 2023                            43 | P a g e  

 

Chapter 4: 

Problem analysis 
 

4.1 A first approach 
 

The first approach to the problem is the maintenance of a collection of approximate 

distributed counters, treating each counter individually. We need to define the appropriate 

value of the approximation factor ε among the given approximate counters, aiming to achieve 

an ε-approximation of the MLE of joint probability distribution, while using the minimum 

communication cost. 

This can be achieved using the three algorithms BASELINE, UNIFORM, and NON_UNIFORM 

[18], which define the way to divide the approximation factor ε among the approximate 

distributed counters. The implemented type of approximate distributed counter is the 

RANDOMIZED counter and the DETERMINISTIC counter, which are discussed and analyzed 

below. 

 

EXACT counters 

The first solution to provide continuous maintenance of the MLE, which also requires the 

continuous maintenance of corresponding counters, is the EXACT counters (Algorithm 1,2). 

This way, the Coordinator maintains the EXACTMLE of the joint probability distribution at any 

time, but the communication cost quickly becomes the bottleneck of the entire system. 

Algorithm 1: Exact Counter (EXACT) - Worker 

Input: 𝒙 = < 𝑥1, … , 𝑥𝑛 > is a full particle of nodes from the Bayesian Network   

     

1. If (received = `INPUT`) 

2.   Foreach 𝑥𝑖 from 𝒙 

3.     If( 𝑋𝑖 has parents) then 

4.       // Get the counters to correspond to the parents’ nodes of 𝑋𝑖 

5.      GET_COUNTER (𝑥𝑖
𝑝𝑎𝑟

) 

6.     INCREMENT_ COUNTER (𝑥𝑖
𝑝𝑎𝑟

) 

7.       SEND_MESSAGE (𝑥𝑖
𝑝𝑎𝑟

,`INCREMENT`) 

8.     End 

9.      

10.     GET_COUNTER (𝑥𝑖) 

11.    INCREMENT_COUNTER (𝑥𝑖) 

12.   SEND_MESSAGE (𝑥𝑖 ,`INCREMENT`) 

13.   End 

14. End 

 

The idea behind the EXACT counter is that for each increment on the counter, the site also 

sends a message to the Coordinator (Algorithm 1) to update the value of the counter 



January 2023                            44 | P a g e  

 

(Algorithm 2). However, this approach leads to a loss of the benefit of the distributed 

environment, as the communication cost quickly becomes substantial.   

Given a Bayesian Network Structure 𝒢(𝒳, ℰ), which consists of 𝑛 nodes, using EXACT counters, 

we can prove that the total communication cost required to continuously maintain the MLE 

of the του  𝒢 is equal to 𝛰(𝑚 ⋅ 𝑛), where 𝑚 is the number of observations. This corresponds 

to sending 𝑚 messages of size 𝑛. The communication cost increases linearly with the number 

of the observations in data stream. Therefore, it is necessary to find a way to avoid this linear 

dependence on the number of observations. 

Algorithm 2: Exact Counter (EXACT) - Coordinator 

Input:  

type_message: corresponds to one of the available types of messages 

message: corresponds to a message 

  

1. If (type_message = `INCREMENT`) 

2.   GET_COUNTER_MSG (message) 

3.   UPDATE_COUNTER 

 

 

4.1.1 Approximated Distributed counters 
 

To mitigate the linear dependency on the number of training instances, it is necessary to 

maintain an (ε,δ)-approximation of the MLE of the Bayesian Network 𝒢(𝒳, ℰ). To accomplish 

this, appropriate approximate distributed counters are employed, which are accompanied by 

the minimal communication cost. The implemented types of counters are the RANDOMIZED 

and the DETERMINISTIC counters, which are discussed in detail. Table 2 provides the space 

and communication complexity of each counter, while Table 1 presents the notations used for 

both on RANDOMIZED and DETERMINISTIC counters. 

 

Count-Tracking problem 

Each site 𝑆𝑖, where 𝑖 ∈ {1, … , 𝑘}, maintains a local counter 𝑛𝑖, initially set to zero. As data is 

received, each site 𝑆𝑖 increments its local counter 𝑛𝑖(𝑡), where 𝑛𝑖(𝑡) denotes the value of the 

𝑛𝑖 at the time 𝑡. Additionally, assuming each update for each site follows the format 〈𝑖, 𝑐〉 , 

each site 𝑆𝑖 updates the local counter 𝑛𝑖(𝑡) by 𝑐 (Cash register model), where 𝑐 > 0 and 

specifically 𝑐 = 1 , allowing only insertions. As a result, each local counter 𝑛𝑖 represents a 

linear, monotonic increasing function and accordingly the total counter. 

Our objective is for the Coordinator to maintain an (ε,δ)-approximation of the total counter 

𝑛(𝑡) =  ∑ 𝑛𝑖(𝑡)𝑘
𝑖=1  at any given time, where 0 ≤  𝜀, 𝛿 ≤ 1. This can be defined as follows: 

(1 − 𝜀) ∙ 𝑛(𝑡) ≤  𝑛̂(𝑡) ≤  (1 + 𝜀) ∙ 𝑛(𝑡) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝛿 

While also ensuring the minimal communication cost, it has been mentioned in [19], the 

minimum required communication cost to maintain such a counter is equal to 𝑂(𝑘/𝜀 ∙  𝑙𝑜𝑔𝑁) 

, where N denotes the final value of the total counter 𝑛 and 𝑘 denotes the number of sites. 



January 2023                            45 | P a g e  

 

 

Notations Description 

𝒏𝒊 Local counter of 𝑆𝑖 

𝒏 Total counter 

𝒏̅𝒊 Last sent value of 𝑆𝑖 to Coordinator  

𝒑 Probability  𝑝 ∈ [0,1) . Initially, 𝑝 = 1 

𝒏̂𝒊 The estimator of  𝑛𝑖 

𝒏̂ The estimation over the sites (sum of  𝒏̂𝒊) 

𝒏̅ The last broadcast value from the Coordinator 

⌊𝒙⌋𝟐 The next power of 2 less than 𝑥 

𝒏𝒊
′ The last update of the 𝑛𝑖 on Coordinator 

𝒏′ The sum of  𝑛𝑖
′ 

𝑵 The final value of the counter 

𝜺 Approximation factor 

𝜹 Delta refers to randomized counters 

𝒌 The number of sites 
Table 1: Notation summary 

 

 

4.1.1.1 Randomized Counters 

 

The RANDOMIZED counter is the first implemented and discussed in detail below. It has been 

proven to have the lowest communication cost in the count-tracking problem, as stated in 

[19]. The communication cost is 𝑂(√𝑘/𝜀 ∙  𝑙𝑜𝑔𝑁), and as the name suggests, it utilizes a 

randomized algorithm. By employing randomization, the communication cost is reduced by 

√𝑘 compared to any deterministic method. 

By utilizing the randomization method, we can continuously maintain an unbiased estimator 

for 𝑛𝑖, such that 𝐸[𝑛̂𝑖] = 𝑛𝑖, while the variance of the estimator is 𝑉𝑎𝑟[𝑛̂𝑖] =  (𝜀𝑛)2/𝑘.   

Given the variance of each estimator is (𝜀𝑛)2/𝑘, we can prove the total variance is  (𝜀𝑛)2. 

By applying the property of the independence of 𝑛𝑖′𝑠, the following holds: 

𝑉𝑎𝑟[𝑛̂] =  𝑉𝑎𝑟 [∑ 𝑛̂𝑖

𝑘

𝑖=1

]  =   ∑ 𝑉𝑎𝑟[𝑛̂𝑖]

𝑘

𝑖=1

=  𝑘 ∙ 𝑉𝑎𝑟[𝑛̂𝑖] =  (𝜀𝑛)2  

The proceeding statement is sufficient to produce an estimator 𝑛̂ with an error 𝜀𝑛 and a 

probability 1 − 𝛿, by utilizing Chebyshev’s inequality. 

Therefore, given the variance of each unbiased estimator 𝑛̂𝑖 is (𝜀𝑛)2/𝑘, it is sufficient to 

support an error equal to 𝜀𝑛/√𝑘, compared to 𝜀𝑛/𝑘 which is required for any deterministic 

method. As a result, we achieve an improvement of √𝑘. This is demonstrated by utilizing 

Chebyshev’s inequality, where the following statement must hold: 

𝑉𝑎𝑟[𝑛̂𝑖]

(𝑒𝑟𝑟𝑜𝑟)2
≤ 1 ⇒  𝑒𝑟𝑟𝑜𝑟 ≥  𝜀𝑛/√𝑘  



January 2023                            46 | P a g e  

 

Each site 𝑆𝑖 sends the last value of the local counter 𝑛𝑖 to the Coordinator with a probability  

𝑝 when receives an event that increments the local counter 𝑛𝑖. Regarding the estimation of 

the local counter 𝑛𝑖 on Coordinator, the following applies: 

 

𝑛̂𝑖 =  {
𝑛̅𝑖 − 1 − 1/𝑝 , 𝑖𝑓  𝑛̅𝑖 𝑒𝑥𝑖𝑠𝑡𝑠

0 ,                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Where 𝑛̅𝑖 represents the last update on Coordinator for the local counter 𝑛𝑖, while the total 

estimation of the total count 𝑛 is the sum of the corresponding 𝑛̂𝑖 i.e., 𝑛̂ =  ∑ 𝑛̂𝑖
𝑘
𝑖=1 . 

We can prove that the 𝑛̂𝑖 is an unbiased estimator with variance 𝑉𝑎𝑟[𝑛̂𝑖] ≤  1/𝑝2, because 

the total estimation 𝑛̂ is an unbiased estimator with variance 𝑉𝑎𝑟[𝑛̂] ≤ 𝑘/𝑝2. Setting the 

probability appropriately 𝑝 = 𝛩(√𝑘/𝜀𝑛) , is sufficient, then the variance of the total estimator 

is 𝑉𝑎𝑟[𝑛̂] = (𝜀𝑛)2, which is sufficient to maintain an estimator 𝑛̂ with error 𝜀𝑛 with probability 

1 − 𝛿 at any time. The proof is discussed in detail in [19]. 

Considering that the 𝑛 is not accessible from all sites at any time and 𝑝 = 𝛩(√𝑘/𝜀𝑛), it is 

sufficient for each site 𝑆𝑖 has a constant-factor approximation of the 𝑛 in each round. To do 

so, not only each site 𝑆𝑖 sends an increment message to the Coordination with probability 
𝑝(INCREMENT), but also each site 𝑆𝑖 sends an additional message whenever the local counter 

𝑛𝑖 doubles (DOUBLES). When the Coordinator receives the DOUBLES message, it then updates 

the variable 𝑛′ =  ∑ 𝑛𝑖
′𝑘

𝑖=1  , where 𝑛𝑖
′ denotes the last update of the local counter 𝑛𝑖 on 

Coordinator. When 𝑛′ doubles (more precisely, when changes by a factor between 2 and 4), 

the Coordinator broadcasts the 𝑛′ at all sites and then a new round begins. This way ensures 

that each site always has a constant-factor approximation of 𝑛 in each round, which is used 

from sites to define the probability 𝑝. We assume 𝑛̅ represents the last broadcast value of 𝑛′. 

While 𝑛̅ ≤  √𝑘/𝜀 then we set 𝑝 = 1. As a result, the first 𝑂(√𝑘/𝜀) elements will be sent to 

the Coordinator due to the probability 𝑝 = 1. When 𝑛̅ >  √𝑘/𝜀, we set 𝑝 = 1/⌊𝜀𝑛̅/√𝑘⌋
2
. 

While the 𝑛̅ increased in each round, accordingly the probability decreased (more precisely, 

the probability sub-halved in each round). 

At the beginning of each round, the probability decreased, so we need to adapt the values of 

𝑛̅𝑖 on the Coordinator to ensure that the whole system runs with the new probability 𝑝. This 

can be achieved in the following manner: each site 𝑆𝑖 decides with probability 𝑝 = 1/2, if the 

𝑛̅𝑖 remains the same. If decide to change it, then each site 𝑆𝑖 flips a coin with probability 1/𝑝 

(with the new 𝑝) repeatedly. For each failed coin flip decreases, the 𝑛̅𝑖 by 1 until a successful 

coin flip or 𝑛̅𝑖 = 0. In the end, each site 𝑆𝑖 sends a message to the Coordinator with the new 

value of 𝑛̅𝑖. The last step is necessary because of ensuring to prevent the bias will be generated 

on the estimation estimator 𝑛̂𝑖 with the change of 𝑝. The whole process is summarized in 

Algorithms 3,4. 

 

 

 



January 2023                            47 | P a g e  

 

Algorithm 3: Randomized Counter (RC) - Worker 

Input:    epsilon, delta 

   type_message: corresponds to one of the available types of messages 

 

1. If (𝑛𝑖 increment by one) 

2.   SEND_MESSAGE (𝑛𝑖,𝑝,`INCREMENT`) 

3.   UPDATE (𝑛̅𝑖) 

4. If (𝑛𝑖 doubles) 

5.   SEND_MESSAGE (𝑛𝑖
′, 𝑝=1, `DOUBLES`) 

6.   UPDATE (𝑛̅𝑖) 

7. If (type_message = `UPDATE`) 

8.   // New round begins 

9.   UPDATE (𝑛̅) 

10.   If ( 𝑛̅ < √𝑘/𝜀 ) Set 𝑝=1 

11.   Else 

12.         Set 𝑝 = 1/⌊𝜀𝑛̅/√𝑘⌋
2
 

13.         If (𝑝 halved) 

14.            // Adjust the 𝑛𝑖 

15.            SEND_MESSAGE (𝑛𝑖,𝑝 =
1

2
,`INCREMENT`) 

16.            If (loose flip) 

17.               While (Flip until succeed) 

18.               SEND_MESSAGE (𝑛𝑖-num_of_failures,𝑝 = 1,`INCREMENT`) 

19.         UPDATE (𝑛̅𝑖) 

 
Regarding the communication cost of the RANDOMIZED counter, the cost can be analyzed as 
follows. In each round, the communication cost consists of the communication cost of the 
broadcast of the value 𝑛̅ from the Coordinator (upstream communication cost), resulting in a 
cost of 𝑂(𝑘). Additionally, the communication cost required to send the sites to the 
Coordinator(downstream communication cost), equals 𝑂(𝑛𝑝). Combining these costs, the 

communication cost per round is 𝑂(𝑘 + 𝑛𝑝) = 𝑂(𝑘 +  √𝑘/𝜀)  = 𝑂(√𝑘/𝜀). Considering that 

there are 𝑙𝑜𝑔𝑁 rounds, the total communication cost is 𝑂(√𝑘/𝜀 ∙  𝑙𝑜𝑔𝑁). 
 

Algorithm 4: Randomized Counter (RC) - Coordinator 

Input: type_message corresponds to one of the available types of messages 

  

1. If (type_message = `INCREMENT`) 

2.   UPDATE (𝑛̅𝑖) 

3.   CALCULATE (𝑛̂𝑖) 

4. If (type_message = `DOUBLES`) 

5.   UPDATE (𝑛𝑖
′) 

6.   UPDATE (𝑛′) 
7.   If (𝑛′doubles) // Change by a factor between 2 and 4 

8.       // New round begins 

9.       Set 𝑛̅ =  𝑛′ 
10.       BROADCAST(𝑛̅,`UPDATE`) 

 

 

 



January 2023                            48 | P a g e  

 

4.1.1.2 Deterministic Counters 

 

The second counter implemented and discussed in detail below is the DETERMINISTIC counter. 

Similar approaches have been used in [17] and [20]. As the name suggests, we focus on 

deterministic methods while ensuring an ε-approximation of the counter. At any time 𝑡 the 

following statement holds: 

(1 − 𝜀) ∙ 𝑛(𝑡) ≤  𝑛̂(𝑡) ≤  (1 + 𝜀) ∙ 𝑛(𝑡)  

The algorithm operates as follows. Given an ε-approximation of the counter, the maximum 

error that can be supported by Coordinator at any time is 𝜀𝑛. Considering the independent of 

the 𝑘 sites, we can easily prove that the maximum error at each site, while ensuring an ε-

approximation, equals 𝜀𝑛/𝑘. 

The whole process is summarized in Algorithms 4,5. Since each site cannot know the exact 

value of n at any time, although it is sufficient for each site to maintain a constant factor 

approximation of the 𝑛 through 𝒏̅ at each round, where 𝒏̅ denotes the last broadcast value of 

the Coordinator. Initially, we set 𝒏̅ = 0. Now, each site 𝑆𝑖 sends a message to the Coordinator 

whenever the 𝑛𝑖  >  𝜀𝑛̅/𝑘(INCREMENT). When the Coordinator receives 𝑘 such messages, 

indicating that the maximum error has been reached, it broadcasts a message to all sites to 

receive the local counters from each site (DRIFT). Upon receiving a DRIFT message, the 

Coordinator updates the value of 𝒏̅. When 𝑘 messages have been received (one from each 

site), the Coordinator broadcasts an UPDATE message to all sites with the new value of the 𝒏̅. 

marking the beginning of a new round. Finally, it can be observed that the first 𝑂(𝑘/𝜀) 

elements will be sent to the Coordinator, as 𝜀𝑛̅/𝑘 ≤ 1. 

Algorithm 4: Deterministic Counter (DC) - Worker 

Input:    epsilon 

   type_message corresponds to one of the available types of messages 

  

1. If (type_message = `INPUT`) 

2.   Increment 𝑛𝑖 // local drift 

3. If (𝑛𝑖  >  𝜀𝑛̅/𝑘 ) 
4.   SEND_MESSAGE (𝑛𝑖,𝑝 = 1,`INCREMENT`) 

5.   Reset the local counter 𝑛𝑖 // local drift 

6.  

7. If (type_message = `DRIFT`) 

8.   SEND_MESSAGE (𝑛𝑖,𝑝 = 1,`DRIFT`) 

9.    Reset the local counter 𝑛𝑖 // local drift 

10.  
11. If (type_message = `UPDATE`) 

12.   // New round begins 

13.   UPDATE (𝑛̅) 

 

 

The communication cost of the DETERMINISTIC counter can be analyzed as follows. In each 
round, the communication cost consists of the communication cost of the broadcast of both 
the value 𝑛̅ and a DRIFT message from the Coordinator (upstream communication cost), 
resulting in a cost of 𝑂(𝑘). Additionally, the communication cost required from the sites to 
the Coordinator (downstream communication cost) resulting in a cost of 𝑂(𝑘 +  𝑘/𝜀). 
Combining these costs, the communication cost per round is 𝑂(𝑘 + 𝑘/𝜀) = 𝑂(𝑘/𝜀). The 



January 2023                            49 | P a g e  

 

Coordinator broadcasts the updated value of 𝒏̅  each time it increases by a factor of 1 +

 ∑ 𝜀/𝑘𝑘
𝑖=1 = 1 + 𝜀. This implies that the number of rounds is bounded by 𝛰(log1+𝜀 𝛮). 

Therefore, the total communication cost is 𝑂(𝑘/𝜀 ∙  𝑙𝑜𝑔𝑁). 
 

 

Algorithm 5: Deterministic Counter (DC) – Coordinator 

Input:  type_message corresponds to one of the available types of messages 

  

1. If (type_message = `INCREMENT`) 

2.   UPDATE (𝑛̅𝒊) 

3.   CALCULATE (𝑛̂𝑖) 

4.   If (num_messages_inc = 𝑘) 

5.        BROADCAST(`DRIFT`) 

6.  

7. If (type_message = `DRIFT`) 

8.   UPDATE (𝑛̅) 

9.   If (num_messages_drift = 𝑘) 

10.      // New round begins 

11.      BROADCAST(𝑛̅,`UPDATE`)   

 

 

Count-Tracking problem Space (per site) Communication cost 

EXACT 𝑂(1) 𝑂(𝑁) 

RANDOMIZED 𝑂(𝑙𝑜𝑔𝑁) 𝑂(√𝑘/𝜀 ∙  𝑙𝑜𝑔𝑁) 

DETERMINISTIC 𝑂(𝑙𝑜𝑔𝑁) 𝑂(𝑘/𝜀 ∙  𝑙𝑜𝑔𝑁) 
Table 2: Space and communication complexity for each counter 

 

 

4.1.1.3 Comparison between RANDOMIZED and DETERMINISTIC  
 

The only difference between the counters is the dependence on the number of sites 𝑘, 

specifically, the RANDOMIZED counter has an improvement by a factor of √𝑘. The latter was 

confirmed through experimental evaluation, where the change of the communication cost of 

the RANDOMIZED counter was smaller compared to the DETERMINISTIC counter when varying 

the number of sites 𝑘. 

The reasons for implementing the DETERMINISTIC counter are twofold. Firstly, it relates to the 

completeness of the problem. We want to address the problem by considering how each 

approximate counter can be adapted. Secondly, we observe that when the number of sites is 

small, the DETERMINISTIC counter exhibits a lower communication cost. 

In the DETERMINISTIC counter, the quantity 𝜀 ⋅ 𝑛̅𝐷𝐶/𝑘 defines when a message is sent, 

whereas, for the RANDOMIZED counter, it is the probability 𝑝 = 1/⌊𝜀 ⋅ 𝑛̅𝑅𝐶/√𝑘⌋
2
. The values 

of 𝑛̅𝐷𝐶 and 𝑛̅𝑅𝐶  determine the number of messages that will be sent, considering the values 

of the 𝜀, 𝑘 constant. 



January 2023                            50 | P a g e  

 

In most cases, we observe that  𝑛̅𝑅𝐶 <  𝑛̅𝐷𝐶, indicating that the number of messages required 

for the DETERMINISTIC counter to reach the value 𝑛̅𝐷𝐶 is bigger. Assuming the DETERMINISTIC 

counter sends a message with a probability 𝑝′, which is determined by the quantity 𝜀 ⋅ 𝑛̅𝐷𝐶/𝑘. 

Despite 𝑛̅𝑅𝐶 <  𝑛̅𝐷𝐶  resulting in a larger number of messages to achieve the probability 𝑝′, 

henceforth the 𝑝′ > 𝑝. Although the DETERMINISTIC counter sends more messages to reach 

the value of 𝑛̅𝐷𝐶, it gains an advantage due to 𝑝′ > 𝑝. 

When the difference between 𝑛̅𝑅𝐶  and 𝑛̅𝐷𝐶 remains small, which is primarily defined by the 

number of sites 𝑘, the advantage gained from the DETERMINISTIC counter is larger. With a 

smaller number of sites, the difference between them becomes less significant, and the 

advantage of the DETERMINISTIC counter is amplified. However, when the difference between 

𝑛̅𝑅𝐶  and 𝑛̅𝐷𝐶 is substantial, the advantage of the DETERMINISTIC counter diminishes. This is 

because the number of messages required to reach the value of 𝑛̅𝐷𝐶 is significantly larger than 

the number of messages to reach the value 𝑛̅𝑅𝐶, reducing the impact of the probability 𝑝′. 

This occurs when 𝑛̅𝐷𝐶 ≫ 𝑛̅𝑅𝐶. 

Based on the experimental evaluation, it is preferable to use the DETERMINISTIC counter 

when the number of sites is small, while the RANDOMIZED counter is more suitable when the 

number of sites is large. 

As shown in Figure 12, we measure the values of 𝑛̅𝑅𝐶  and 𝑛̅𝐷𝐶(𝑦 − 𝑎𝑥𝑖𝑠) while varying the 

number of sites 𝑘, assuming 𝜀 = 4 × 10−4, 𝛿 = 0.25 and 𝑘 ∈ [2,30]. As the number of sites 

increases, the difference in values 𝑛̅𝑅𝐶  and 𝑛̅𝐷𝐶 also becomes significantly larger. 

 

Figure 12:  𝑛̅𝑅𝐶  and 𝑛̅𝐷𝐶  varying the number of sites 𝑘 

 

 

 

 

 

 



January 2023                            51 | P a g e  

 

4.1.2 Analysis of BASELINE, UNIFORM and ΝΟΝ_UNIFORM 
 

Apart from the general approach and the previously discussed approximated distributed 

counters, the remaining analysis focuses on how to allocate the available error budget among 

the approximate distributed counters 𝛢𝑖(𝑥𝑖, 𝑥𝑖
𝑝𝑎𝑟

), 𝛢𝑖(𝑥𝑖
𝑝𝑎𝑟

), while ensuring an (ε,δ)-

approximation of the MLE at any time. 

This section introduces and examines the BASELINE, UNIFORM, and NON_UNIFORM 

algorithms, which provide a way to divide the available error budget. 

The analysis includes the RANDOMIZED counter. Table 3 presents the results of each one of 

the algorithms. In the case of the DETERMINISTIC counter, the difference lies in the 

parameters 𝛿 and 𝑘. Specifically, the DETERMINISTIC counter exhibits a linear dependency on 

the number of sites 𝑘, while it does not depend on 𝛿. 

Given a Bayesian Network Structure 𝒢(𝒳, ℰ), where the number of nodes denoted as 𝒳 =

{ 𝛸1, … , 𝛸𝑛}, which constitutes a Bayesian Network with 𝑛 nodes. Additionally, 𝐽𝑖 represents 

the domain cardinality of the 𝑋𝑖  node, denoted as 𝐽𝑖 = |𝑉𝑎𝑙(𝑋𝑖)| for each  𝑖 ∈ {1, … , 𝑛} , while 

the 𝐾𝑖 represents the domain cardinality of parents nodes of 𝑋𝑖  , denoted as 𝐾𝑖 =

| 𝑉𝑎𝑙(𝑃𝑎𝑟(𝑋𝑖)) | for each 𝑖 ∈ {1, … , 𝑛}. Finally, the 𝑘 denotes the number of sites. 

Additionally, we assume 𝐽 =  𝑚𝑎𝑥𝑖=1
𝑛  𝐽𝑖 denotes the node with the largest set of values in the 

network, 𝑑 =  𝑚𝑎𝑥𝑖=1
𝑛 |𝑃𝑎𝑟(𝑋𝑖)| denotes the maximum number of parents node for any 

variable in the network and the parameters 𝜀, 𝛿 within the range of 0 ≤ 𝜀, 𝛿 ≤ 1. 

 

BASELINE 

The BASELINE algorithm is the first algorithm introduced. The approximation factor for each 

approximate distributed counter 𝛢𝑖(𝑥𝑖, 𝑥𝑖
𝑝𝑎𝑟

), 𝛢𝑖(𝑥𝑖
𝑝𝑎𝑟

), is assigned to 
𝜀

3𝑛
 . The BASELINE 

algorithm ensures an (ε,δ)-approximation of MLE of the joint probability distribution of the 

network 𝒢 at any time. The proof is discussed in detail in [18, Section IV-C]. The error budget 

is divided uniformly among the counters. 

The total communication cost given m training instances is:  

𝑂 ( 
𝑛2⋅𝐽𝑑+1√𝑘

𝜀
⋅ log

1

𝛿
 ⋅ log m ) 

In this case, by replacing the value of the approximation factor 𝜀, the communication cost of 

each approximate distributed counter is 𝑂(
𝑛⋅√𝑘

𝜀
⋅ log

1

𝛿
 ⋅ log m) messages. Additionally, for 

each 𝑖 ∈ {1, … , 𝑛}, there are at most 𝐽𝑑+1 counters 𝛢𝑖(𝑥𝑖, 𝑥𝑖
𝑝𝑎𝑟

) and 𝐽𝑑 counters 𝛢𝑖(𝑥𝑖
𝑝𝑎𝑟

), for 

each 𝑥𝑖 ∈ 𝑉𝑎𝑙(𝑋𝑖) and 𝑥𝑖
𝑝𝑎𝑟

∈ 𝑉𝑎𝑙(𝑃𝑎𝑟(𝑋𝑖)). Combing them, the total communication cost 

is 𝑂(
𝑛2⋅𝐽𝑑+1√𝑘

𝜀
⋅ log

1

𝛿
 ⋅ log m) messages. By using the BASELINE algorithm, we manage to avoid 

the linear dependency on the number of training instances m, as the dependency is 

logarithmic. 

 



January 2023                            52 | P a g e  

 

UNIFORM 

A different approach to the problem leads to the UNIFORM algorithm. The approximation 

factor for each approximate distributed counter 𝛢𝑖(𝑥𝑖, 𝑥𝑖
𝑝𝑎𝑟

), 𝛢𝑖(𝑥𝑖
𝑝𝑎𝑟

), is 
𝜀

16√𝑛
. By employing 

the UNIFORM algorithm, we again ensure an (ε,δ)-approximation of the MLE of the joint 

probability distribution of the network 𝒢. The proof is described in detail in [18, Section IV-C]. 

The error budget is uniformly divided among the counters. 

The total communication cost given m training instances is:  

𝑂 ( 
𝑛3/2⋅𝐽𝑑+1√𝑘

𝜀
⋅ log

1

𝛿
 ⋅ log m ) 

The communication cost for each approximate distributed counter is 𝑂(
√𝑛𝑘

𝜀
⋅ log

1

𝛿
 ⋅ log m) 

messages, given the approximation factor, is 
𝜀

16√𝑛
 . For each 𝑖 ∈ {1, … , 𝑛}, there are at most 

𝐽𝑑+1 counters 𝛢𝑖(𝑥𝑖, 𝑥𝑖
𝑝𝑎𝑟

) and 𝐽𝑑 counters 𝛢𝑖(𝑥𝑖
𝑝𝑎𝑟

), for each 𝑥𝑖 ∈ 𝑉𝑎𝑙(𝑋𝑖) and 𝑥𝑖
𝑝𝑎𝑟

∈

𝑉𝑎𝑙(𝑃𝑎𝑟(𝑋𝑖)). Combing them, the total communication cost is 𝑂(
𝑛3/2⋅𝐽𝑑+1√𝑘

𝜀
⋅ log

1

𝛿
 ⋅ log m) 

messages. The dependency on the number of training instances is logarithmic and we achieve 

an improvement of √𝑛 on the communication cost compared to the BASELINE algorithm. 

 

NON_UNIFORM 

The two previous algorithms uniformly divide the available among the counters. None of them 

consider elements related to the structure of a node, such as the domain cardinality and the 

number of parents nodes. Now, the difference is the NON_UNIFORM includes such elements. 

The available error budget is no longer uniformly divided among the counters, but the 

approximation factor for each approximate distributed counter 𝛢𝑖(𝑥𝑖, 𝑥𝑖
𝑝𝑎𝑟

), 𝛢𝑖(𝑥𝑖
𝑝𝑎𝑟

) is 

related to both  𝐽𝑖 =  |𝑉𝑎𝑙(𝑋𝑖)| and 𝐾𝑖 = | 𝑉𝑎𝑙(𝑃𝑎𝑟(𝑋𝑖)) |. 

In this case, there is a distinction between the counters. For each approximate distributed 

counter 𝛢𝑖(𝑥𝑖, 𝑥𝑖
𝑝𝑎𝑟

), the approximation factor is defined in the following manner: 

 𝑣𝑖 =
(𝐽𝑖𝐾𝑖)

1
3⋅𝜀

16𝑎
 , 𝑤ℎ𝑒𝑟𝑒 𝛼 = ( ∑ (𝐽𝑖𝐾𝑖)

2
3  

𝑛

𝑖=1
)

1/2

 

While for each approximate distributed counter 𝛢𝑖(𝑥𝑖
𝑝𝑎𝑟

), the approximation factor is defined 

in the following manner:  

𝜇𝑖 =  
(𝐾𝑖)

1
3⋅𝜀

16𝛽
  , 𝑤ℎ𝑒𝑟𝑒 𝛽 =  ( ∑ (𝐾𝑖)

2
3  

𝑛

𝑖=1
)

1
2
 

By applying the values of 𝑣𝑖, 𝜇𝑖, we ensure an (ε,δ)-approximation of the MLE of the joint 

probability distribution of the network 𝒢. The proof is discussed in detail in [18, Section IV-C].  

In this case, the approximation factor of each approximate distributed counter 𝛢𝑖(𝑥𝑖 , 𝑥𝑖
𝑝𝑎𝑟

) 

depends on both 𝐽𝑖 and 𝐾𝑖. This means that the error is proportional to both the set of values 

of  𝑋𝑖  and the domain cardinality of parents nodes of 𝑋𝑖. On the other hand, the approximation 



January 2023                            53 | P a g e  

 

factor of each approximate distributed counter 𝛢𝑖(𝑥𝑖
𝑝𝑎𝑟

) solely depends on 𝐾𝑖, meaning that 

the error is only proportional to the domain cardinality of parents nodes of 𝑋𝑖.  

The total communication cost given m training instances is:  

𝑂(Γ⋅
√𝑘

𝜀
⋅ log 

1

𝛿
 ⋅ log m) , όπου Γ =  (∑ (𝐽𝑖𝐾𝑖)

2
3  

𝑛

𝑖=1
)

3/2

+  (∑ (𝐾𝑖)
2
3  

𝑛

𝑖=1
)

3/2

 

The communication cost of each approximate distributed counter 𝛢𝑖(𝑥𝑖, 𝑥𝑖
𝑝𝑎𝑟

) is 

𝑂( 
√𝑘

𝑣𝑖
⋅ log

1

𝛿
 ⋅ log m) messages. For each node 𝑋𝑖, the counters 𝛢𝑖(𝑥𝑖 , 𝑥𝑖

𝑝𝑎𝑟
) are defined by 

both 𝐽𝑖 and 𝐾𝑖 , so there are at most 𝐽𝑖 ∙ 𝐾𝑖 counters. Combining them, the total communication 

cost for all counters 𝛢𝑖(𝑥𝑖, 𝑥𝑖
𝑝𝑎𝑟

) for each node 𝑋𝑖  is: 

𝑀1 =  ∑
𝐽𝑖 ∙ 𝐾𝑖 ∙ √𝑘

𝑣𝑖

𝑛

𝑖=1

∙ log
1

𝛿
 ⋅ log m 

Replacing the 𝑣𝑖 , we can redefine the 𝑀1 with the following manner: 

𝑀1 =  (∑(𝐽𝑖 ∙ 𝐾𝑖)2/3

𝑛

𝑖=1

)

3/2

 ∙ 
√𝑘

𝜀
⋅ log 

1

𝛿
 ⋅ log m 

Accordingly, for each node 𝑋𝑖  there are at most 𝐾𝑖 counters 𝛢𝑖(𝑥𝑖
𝑝𝑎𝑟

), for which the 

commination cost is 𝑂( 
√𝑘

𝜇𝑖
⋅ log

1

𝛿
 ⋅ log m) messages. Combing them, the total communication 

cost for all the nodes is (replacing also the 𝜇𝑖): 

𝑀2 =  (∑ 𝐾𝑖
2/3

𝑛

𝑖=1

)

3/2

 ∙ 
√𝑘

𝜀
⋅ log 

1

𝛿
 ⋅ log m 

 

The total communication cost is 𝛭1 + 𝛭2 =  𝑂(Γ⋅
√𝑘

𝜀
⋅ log 

1

𝛿
 ⋅ log m) messages. The linear 

dependency on the number of training instances also remains. 

 

 

 

 

 Approximation Factor Communication Cost 

BASELINE 

𝛢𝑖(𝑥𝑖, 𝑥𝑖
𝑝𝑎𝑟

), 𝛢𝑖(𝑥𝑖
𝑝𝑎𝑟

) 
 

𝜀

3𝑛
 𝑂 ( 

𝑛2⋅𝐽𝑑+1√𝑘

𝜀
⋅ log

1

𝛿
 ⋅ log m ) 

 

UNIFORM 

𝛢𝑖(𝑥𝑖, 𝑥𝑖
𝑝𝑎𝑟

), 𝛢𝑖(𝑥𝑖
𝑝𝑎𝑟

) 

𝜀

16√𝑛
 𝑂 ( 

𝑛3/2⋅𝐽𝑑+1√𝑘

𝜀
⋅ log

1

𝛿
 ⋅ log m ) 

 



January 2023                            54 | P a g e  

 

NON_UNIFORM 
 

𝛢𝑖(𝑥𝑖, 𝑥𝑖
𝑝𝑎𝑟

) 
 𝑣𝑖 =

(𝐽𝑖𝐾𝑖)
1
3⋅𝜀

16𝑎
 

𝛼 = ( ∑ (𝐽𝑖𝐾𝑖)
2
3  

𝑛

𝑖=1
)

1/2

 

 

𝑂(Γ⋅
√𝑘

𝜀
⋅ log 

1

𝛿
 ⋅ log m)  

 

Γ =  (∑ (𝐽𝑖𝐾𝑖)
2
3  

𝑛

𝑖=1
)

3/2

 

+ (∑ (𝐾𝑖)
2
3  

𝑛

𝑖=1
)

3/2

  
 

 𝛢𝑖(𝑥𝑖
𝑝𝑎𝑟

) 
𝜇𝑖 =  

(𝐾𝑖)
1
3⋅𝜀

16𝛽
 

𝛽 =  ( ∑ (𝐾𝑖)
2
3  

𝑛

𝑖=1
)

1
2

 

Table 3: Approximation factor and Communication Cost for algorithms 

 

 

4.1.2.1 Dummy Father 
 

During the evaluation of the NON_UNIFORM algorithm, where the approximation factor ε is 

proportional to both 𝐽𝑖 and 𝐾𝑖, we observed a problematic situation related to the orphan 

nodes, that is 𝑃𝑎𝑟(𝑋𝑖) =  ∅. By applying the NON_UNIFORM algorithm, the approximation 

factor ε for each node is zero due to the 𝐾𝑖′𝑠 node is also zero. As a result, we need to maintain 

the EXACT counter for each 𝑥𝑖 ∈ 𝑉𝑎𝑙(𝑋𝑖) of a such node. Consequently, when the number of 

orphan nodes is significant incurring quite high communication cost for maintaining them. 

To prevent this problem, we suggest for each orphan node 𝑋𝑖, the insertion of a dummy parent 

node (Dummy father -- Figure 13). Specifically, for each such node, we set 𝐾𝑖 = 1. With the 

insertion of the node managing to avoid the maintenance of the EXACT counter for each 

counter 𝛢𝑖(𝑥𝑖, 𝑥𝑖
𝑝𝑎𝑟

) relating to the orphan node 𝑋𝑖. 

   

 

 

 

 

 

Figure 13: Dummy Father 

 

Moreover, we achieve to increase in the value of = ( ∑ (𝐽𝑖𝐾𝑖)
2

3  𝑛
𝑖=1 )

1/2

, which leads to a 

slightly larger approximation factor for the rest of the counters. This also leads to slightly lower 

communication cost. The primary advantage is the avoidance of maintaining the EXACT 

counters, which mainly contributes to the reduction of the communication cost achieved. 



January 2023                            55 | P a g e  

 

The NON_UNIFORM algorithm is combined with the Dummy Father method in experimental 

evaluation. We achieve to reduce the communication cost by a percentage is ranged from 0 −

50% related to the ΝΟΝ_UNIFORM (See. Chapter 6.3.5). To mention that the reduction 

percentage is achieved, mainly depends on the topology of the Bayesian Network. The 

reduction percentage varied among the different Bayesian Networks because the reduction 

depends on whether the network contains orphan nodes or not.  

 

4.1.2.2 Comparison among BASELINE, UNIFORM, NON_UNIFORM algorithms 
 

Generally, comparing the previous algorithms, the following statement holds BASELINE < 

UNIFORM < NON_UNIFORM.  

The difference between BASELINE and UNIFORM is directly reflected in the communication 

cost. In most cases, BASELINE is better than UNIFORM as 
𝜀

16√𝑛
>  

𝜀

3𝑛
, so the communication 

cost for each approximate distributed counter of the UNIFORM algorithm is lower. However, 

when the number of nodes 𝑛 ≤ 29, the BASELINE appears better than the UNIFORM as 
𝜀

16√𝑛
<

 
𝜀

3𝑛
 and so the communication cost for each approximate distributed counter of the BASELINE 

algorithm is lower. Both BASELINE and UNIFORM have the same dependency on the 𝑘, 𝜀, 𝛿 

and 𝑚 parameters, although the only difference is on the 𝑛 parameter, specifically the 

UNIFORM algorithm is better by a factor of √𝑛. 

Regarding the UNIFORM and NON_UNIFORM algorithms, the NON_UNIFORM is at least as 

good as the UNIFORM algorithm, given the NON_UNIFORM algorithm exploits more 

information about the network. Both UNIFORM and NON_UNIFORM have the same 

dependency on 𝑘, 𝜀, 𝛿 and 𝑚 parameters, the point which differs is on the parameters 𝐽𝑖, 𝐾𝑖, 

respectively. When the differences of 𝐽𝑖, 𝐾𝑖 among nodes are significant, then the 

NON_UNIFORM prevails. However, when the values of 𝐽𝑖 and 𝐾𝑖 are quite close, the UNIFORM 

algorithm appears slightly better, which is confirmed on the experimental evaluation because 

the Bayesian Networks are used, and do not appear significant differences in parameters 𝐽𝑖, 𝐾𝑖 

among the available nodes. 

 

4.1.3 Communication cost of Naïve Bayes Classifier 
 

This section presents the communication cost for each of the three algorithms for the Naïve 

Bayes Classifiers.  

Given a Naïve Bayes Classifier 𝒢(𝒳, ℰ) , where the set of nodes is denoted as 𝒳 =

{X1 , … , 𝑋𝑛, 𝐶}. In this case, 𝐾𝑖 for each node 𝑋𝑖  represents the domain cardinality of the class 

variable 𝐶, where 𝐾𝑖 = 𝐽𝑐 for each 𝑋𝑖 ∈  𝒳 − {𝐶}. Additionally, the maximum number of 

parents nodes that exist in the graph is 1, so 𝑑 = 1. 

 

 



January 2023                            56 | P a g e  

 

Based on Table 3, the total communication cost of the BASELINE algorithm is: 

𝐵𝐴𝑆𝐸𝐿𝐼𝑁𝐸 𝑤𝑖𝑡ℎ Naïve Bayes Classifier: 𝑂 ( 
𝑛2⋅𝐽2√𝑘

𝜀
⋅ log

1

𝛿
 ⋅ log m ) 

For the UNIFORM algorithm, the total communication cost is: 

𝑈𝑁𝐼𝐹𝑂𝑅𝑀 𝑤𝑖𝑡ℎ Naïve Bayes Classifier: 𝑂 ( 
𝑛3/2⋅𝐽2√𝑘

𝜀
⋅ log

1

𝛿
 ⋅ log m ) 

Regarding the ΝΟΝ_UNIFORM algorithm, for each approximate distributed counter 

𝛢𝑖(𝑥𝑖, 𝑥𝑖
𝑝𝑎𝑟

), the approximation factor is defined as follows: 

 𝑣𝑖 =
(𝐽𝑖)

1
3⋅𝜀

16𝑎
 , 𝑤ℎ𝑒𝑟𝑒 𝛼 = ( ∑ (𝐽𝑖)

2
3  

𝑛

𝑖=1
)

1/2

 

 

While for each approximate distributed counter 𝛢𝑖(𝑥𝑖
𝑝𝑎𝑟

), the approximation factor is defined 

as follows: 

𝜇𝑖 =  
(𝐾𝑖)

1
3⋅𝜀

16𝛽
=  

𝜀

16√𝑛
  , ό𝜋𝜊𝜐 𝛽 =  √𝑛 ∙ (𝐽𝑐)2/3  

The total communication cost required of the ΝΟΝ_UNIFORM algorithm for the Naïve Bayes 

Classifier, given m training instances, is: 

𝑁𝑂𝑁_𝑈𝑁𝐼𝐹𝑂𝑅𝑀 𝑤𝑖𝑡ℎ Naïve Bayes Classifier 

𝑂 (𝐽𝑐 ∙ ( ∑ (𝐽𝑖)
2
3  

𝑛

𝑖=1
)

3/2

⋅
√𝑘

𝜀
⋅ log 

1

𝛿
 ⋅ log m) 

In all cases for all algorithms, we achieve logarithm dependency on the number of training 

instances. 

 

 

 

 

 

 

 

 

 

 



January 2023                            57 | P a g e  

 

4.2 A second approach 
The second approach proposed for solving the problem while ensuring an (ε,δ)-approximation 

of the MLE of the joint probability distribution of the Bayesian Network Structure 𝒢(𝒳, ℰ) over 

the Distributed Continuous Model. Instead of treating each counter individually, the approach 

views the counters collectively as vectors and specifically as frequency vectors. This shift allows 

for a more general and effective approach to be applied to solving the problem, leading to 

improved results, as discussed in detail below. To achieve this, we incorporate the method of 

Functional Geometric Monitoring [21] in combination with BASELINE and UNIFORM 

algorithms. These algorithms are solely used to define the appropriate value of the 

approximation factor ε among the counters.  

The NON_UNIFORM algorithm is not used in this approach. As mentioned before, the 

approximation factor ε defined by the NON_UNIFORM is specialized for each approximate 

counter, while in this case, we utilize frequency vectors. The goal is to have algorithms that 

can universally be applied to all the counters, and therefore we have selected the BASELINE 

and UNIFORM algorithms for this purpose. By leveraging the concept of frequency vectors and 

combining it with the BASELINE and UNIFORM algorithms, we can effectively address the 

challenges posed by the MLE tracking problem. 

The Functional Geometric Monitoring (FGM) method has been chosen due to its significant 

benefits in terms of communication cost and scalability of the system compared to other 

methods, particularly its predecessor, Geometric Monitoring (GM) [22]. FGM represents the 

successor of the GM method, offering improved performance and capabilities 

The FGM constitutes a universally applicable method that can be employed for various 

monitoring problems. It is independent of the monitoring problem, as it employs a problem-

specific family of functions, known as safe function which will be discussed in detail later. The 

method of the FGM can be integrated with ease into any stream processing framework like 

Apache Flink [23] and Apache Spark [24], providing a general and powerful tool for monitoring 

a wide range of problems. 

Furthermore, the FGM method can be provably adapted under adverse conditions of the 

monitoring problem, regarding tight monitoring bounds (making it a suitable choice for our 

purposes). Additionally, the FGM method can be easily adapted in the presence of skew 

distribution among sites. 

4.2.1 Functional Geometric Monitoring (FGM) 
Given the number of sites 𝑘, where each site 𝑆𝑖 with 𝑖 ∈ {1, … , 𝑘} maintains a frequency vector 

of counters 𝑺𝒊(𝑡)(local state vector), which is updated properly (See Chapter 3.2), while 

receiving data. In addition, the global state vector 𝑺(𝑡) refers to the sum of the corresponding 

local states 𝑺𝒊(𝑡),  denoted as 𝑺(𝑡) =  ∑ 𝑺𝒊(𝑡)𝑘
𝑖=1 . Our primary concern is the region of the 

continuous query (𝑄), aiming for the Coordinator to continuously maintains an ε-

approximation of the query value of the global state vector 𝑆(𝑡), defined as follows: 

𝑄(𝑺(𝑡)) ∈ (1 ± 𝜀)𝑄(𝑬(𝑡)) 

With 𝑬(𝑡) =  ∑ 𝑬𝒊(𝑡)𝑘
𝑖=1 , where 𝑬𝒊 denotes the estimated vector on the Coordinator for each 

site 𝑆𝑖. To maintain the previous equation, each site 𝑆𝑖 needs to periodically send a message 

to the Coordinator, particularly at each round, informing how the local state vector 𝑺𝒊(𝑡) has 



January 2023                            58 | P a g e  

 

varied from the received local data stream. The Coordinator maintains an estimator vector 𝑬𝒊 

for each site 𝑆𝑖. Therefore, each time the site sends such a message to the Coordinator, it 

sends its drift vector 𝑿𝒊(𝑡) = 𝑺𝒊(𝑡) − 𝑬𝒊. The Coordinator updates the 𝑬𝒊 by adding the 

𝑿𝒊(vector addition). More details are discussed in [21]. 

Functional Geometric Monitoring (FGM) ensures the safety of the entire system, and the value 

of the monitoring query falls within the desired bounds, utilizing a safe function 𝜑. The safe 

function denotes a real function that is defined by the monitoring problem. Particularly, the 

safe function employed in each site 𝑆𝑖, where each site 𝑆𝑖 needs to monitor its 𝜑(𝑿𝒊) as its 

drift vector 𝑿𝒊 varies. It is sufficient to prove that if the sum 𝜓 =  ∑ 𝜑(𝑿𝒊)𝑘
𝑖=1 > 0, then the 

safety of the entire system is ensured.  The safe zone composition and quality criteria of safe 

zones are discussed in detail in [25]. 

The analysis of the MLE algorithm primarily centers around the monitoring of frequency 

moments 𝐹𝑝. The objective is to effectively maintain the counters 𝛢𝑖(𝑥𝑖, 𝑥𝑖
𝑝𝑎𝑟

), 𝛢𝑖(𝑥𝑖
𝑝𝑎𝑟

) 

within a given Bayesian Network Structure 𝒢(𝒳, ℰ), where the set of nodes is denoted as 𝒳 =

{𝑋1, … , 𝑋𝑛}.Therefore, the problem can be framed as the continuous maintenance of the  𝐹1 

frequency moment of a vector 𝒙 = [𝑥1, … , 𝑥𝑛]. The 𝐹1 moment, also known as the 𝑙1 𝑛𝑜𝑟𝑚, is 

defined as follows: 

‖𝒙‖1 =  ∑ |𝑥𝑖|

𝑛

𝑖=1

 

Regarding our case, each 𝑥𝑖 of the frequency vector 𝒙 corresponds to the counters 

𝛢𝑖(𝑥𝑖, 𝑥𝑖
𝑝𝑎𝑟

), 𝛢𝑖(𝑥𝑖
𝑝𝑎𝑟

). Therefore, the 𝒙 contains all the counters of each node 𝑋𝑖  in the 

network 𝒢. The frequency of each counter 𝛢𝑖(𝑥𝑖, 𝑥𝑖
𝑝𝑎𝑟

) and 𝛢𝑖(𝑥𝑖
𝑝𝑎𝑟

) is maintained, 

representing the number of times appears in the data stream. 

Furthermore, when monitoring the 𝐹1 frequency moment, we employ safe functions that are 

defined as follows: 

‖𝒙 + 𝑬‖1 − 𝑇 

In the context of continuous querying, the threshold for each round will vary and is equivalent 

to  (1 + 𝜀)‖𝑬‖1. Therefore, the safe function can be defined as follows: 

‖𝒙 + 𝑬‖1 − (1 + 𝜀)‖𝑬‖1 

Our objective is to continuously maintain an ε-approximation of the MLE of a Bayesian 

Network 𝒢(𝒳, ℰ). To achieve this, we need to address two prerequisites. The first prerequisite 

involves dividing the available error budget among the counters in a way that provides an ε-

approximation of the MLE. Since the counters are framed as frequency vectors and the safe 

function follows the previous format, it is evident that the approximation factor ε must be the 

same for all counters. This immediately implies that the BASELINE and UNIFORM algorithms 

are the only ones that can be applied. The second prerequisite is to ensure an ε-approximation 

for each counter 𝛢𝑖(𝑥𝑖 , 𝑥𝑖
𝑝𝑎𝑟

) and 𝛢𝑖(𝑥𝑖
𝑝𝑎𝑟

) for each 𝑋𝑖, given that the error budget has been 

appropriately allocated among the counters. 

By applying the previous formulation of the safe function, it becomes evident that the 

maximum error at each round is proportional to 𝜀‖𝑬‖1. However, it is insufficient for ensuring 



January 2023                            59 | P a g e  

 

an ε-approximation for each counter 𝛢𝑖(𝑥𝑖 , 𝑥𝑖
𝑝𝑎𝑟

), 𝛢𝑖(𝑥𝑖
𝑝𝑎𝑟

). The reason is that the error is 

determined by the sum of the values of all the counters, which it not accurately represent the 

error for each counter. To illustrate this point, we consider a frequency vector that contains 

one small counter and several high counters. The error at each round will be affected by the 

values of the high counters. As a result, the changes of the small counter may not be detected 

because its changes will be smaller than the overall error influenced by the high counters. 

Consequently, the error calculation is based on the sum of all counter values, which does not 

accurately reflect the error for each specific counter. 

We propose a safe function in the format ‖𝒙 + 𝑬‖1 − 𝑇, but the threshold 𝑇 is defined as 

follows: 

𝑇 = ‖𝑬‖1 + 𝑚𝑖𝑛𝑉𝑖𝑜𝑙𝑎𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒  

where m𝑖𝑛𝑉𝑖𝑜𝑙𝑎𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒 = 𝜀 ∙ min
i

𝑬 

The m𝑖𝑛𝑉𝑖𝑜𝑙𝑎𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒 is defined based on the value of the approximation factor 𝜀 and the 

minimum value among counters on 𝛦. This approach ensures an ε-approximation for each 

counter 𝛢𝑖(𝑥𝑖, 𝑥𝑖
𝑝𝑎𝑟

) and 𝛢𝑖(𝑥𝑖
𝑝𝑎𝑟

)  for each 𝑋𝑖. By calculating the error at each round using 

the minimum value among counters, we obtain the least possible error. By ensuring that there 

is no violation for the minimum counter, we infer that there are no violations for the other 

counters because they must change by an amount greater than what is defined. Although this 

approach may result in more rounds, treating the counters collectively and each message on 

the Coordinator contains information for all the available counters, significantly reduces the 

communication cost. 

Despite the error defined by the minimum counter value, which is significantly small, the FGM 

method offers the advantage of treating the counters collectively. This means that for each 

update message from each site 𝑆𝑖, the Coordinator receives information for all counters. As a 

result, the communication cost is significantly reduced, as confirmed by the experimental 

evaluation. We achieve an improvement of 10x in communication cost over the first approach 

and an improvement of 100x in communication cost compared to EXACTMLE. Moreover, the 

FGM provides a scalable and high-throughput solution for the problem, as demonstrated in 

the experimental evaluation. 

Rebalancing 

Our objective is for the round last longer, which is desirable as it allows for better 

summarization of the local streams on local state vectors. Our goal is to minimize the 

upstream communication cost associated with the estimated vector 𝑬 at the beginning of 

each round, whenever possible. While the condition 𝜓 =  ∑ 𝜑(𝑿𝒊)𝑘
𝑖=1 > 0 does not 

necessarily imply a significant movement of the global state 𝑺(𝑡) relative to 𝑬, the safe 

function may be quite useful. Instead of broadcasting a new safe function to the sites 

(incurring upstream communication cost), the Coordinator broadcasts a scaling factor 𝜆. This 

scaling factor is then used by the sites to appropriately adjust their drift vectors. By doing so, 

we reduce the communication cost associated with broadcasting an estimated vector. In 

experimental evaluation, the FGM method is used in conjunction with the rebalancing 

method. 

 



January 2023                            60 | P a g e  

 

Chapter 5: 

Design and Implementation of the system 
 

5.1 Apache Flink 
The Apache Flink [23] is an open-source framework used for distributed stream data 

processing. The core of the Flink constitutes the streaming engine, which provides the ability 

to perform stateful operators over unbounded data streams while guaranteeing in-memory 

speed for computations. The Flink is designed to integrate easily into various cluster 

environments such as Hadoop, Yarn, and Kubernetes.  

 

Figure 14: Apache Flink 

The Apache Flink consists of two processes: the Job Manager and the TaskMangers (Figure 

14). The Job Manger is responsible for coordinating the entire execution process of the 

application, while each TaskManager is responsible for the execution tasks(operators) of the 

dataflow, as well as buffering and the exchange of data streams. 

Furthermore, Flink provides a wide range of APIs that can be used for developing our 

application. One of the most significant APIs is the one that contains the stateful operators. 

These operators allow us to save states while processing the dataset. Each state can be framed 

as a snapshot of the operator at a given time, which keeps track of information related to the 

operator. In our approach, both each site and Coordinator represent a stateful operator. 

 



January 2023                            61 | P a g e  

 

 

 

 

 

 

 

Figure 15: Feedback loop 

Between the sites and the Coordinator, there was a feedback loop. It can be represented as 

the redirecting of one operator output to the previous one (Figure 15). The feedback loop can 

be met in cases related to the continuous maintenance of someone model, which is equivalent 

to our problem. The Apache Flink provides the Iterative Stream operator for implementing the 

feedback loop. Given that the version of the Flink used for executing all the experiments was 

in the early stage (See Chapter 6), we decided to use a Kafka topic as a feedback loop. 

 

5.2 Apache Kafka 
Apache Kafka [26] is an open-source platform that provides the capability of distributed event 

streaming. Kafka has emerged as the successor to traditional messaging systems, offering 

essential characteristics such as high-throughput, high-reliability, scalability, and durability, 

which are crucial for processing distributed streaming data sources. In Apache Kafka, the 

datasets are stored in topics, which are further divided into partitions to ensure the scalability 

and reliability of the system. Typically, there is more than one Kafka broker which constitutes 

a Kafka cluster. Kafka offers two primary services: Kafka consumer and Kafka producer. The 

Kafka consumer is used to read data from a topic while the Kafka producer is responsible for 

publishing data to a topic. 

Figure 16: Apache Kafka 



January 2023                            62 | P a g e  

 

In our system, we utilize Kafka used for reading data streams that are directed to the sites 

and for implementing the feedback loop. For the feedback loop, a Kafka topic is used as a 

buffer between the producer and the consumer. In this context, the producer represents the 

Coordinator which produces all the necessary control messages while the consumer 

represents the sites, which need to consume and process the messages sent by Coordinator. 

 

5.3 System Architecture 

Figure 17: System Architecture 

 

Both Apache Flink and Apache Kafka are utilized in the implementation of our system. Figure 

17 provides an abstract view of our system architecture. 

The Input Source operator is responsible for reading the incoming dataset from a Kafka topic 

which serves as the Input Source. It is responsible for defining the dataset in the appropriate 

format. Each input is represented as a tuple, following a specific format: 

< 𝑣𝑎𝑙𝑢𝑒, 𝑤𝑜𝑟𝑘𝑒𝑟𝑖𝑑 > 

The 𝑣𝑎𝑙𝑢𝑒 denotes the input feature vector of a Bayesian Network (or a Naïve Bayes 

Classifier), while the 𝑤𝑜𝑟𝑘𝑒𝑟𝑖𝑑 serves as a pseudo-key used for distributing the dataset among 

Workers. It ensures that the dataset is evenly distributed among the workers, following a 

horizontal partitioning strategy. 

Each Worker represents a two-input operator, therefore can be framed as a keyed co-process 

operator. The first input refers to the incoming dataset which needs to be processed, while 

the second input refers to the Feedback Source. In this context, the Feedback Source contains 

the control messages that are sent by the Coordinator. Additionally, the Feedback Source and 

Feedback Sink denote the same topic (feedback topic), which acts as a buffer between the 

Coordinator and the Workers. Specifically, the Coordinator acts as Kafka Producer in Feedback 



January 2023                            63 | P a g e  

 

Sink, while the Workers act as Kafka Consumers in Feedback Source. This achieves a two-way 

communication channel between Coordinator and Worker (feedback loop). 

Accordingly, the Coordinators is treated as a two-input operator and can be also implemented 

as a keyed co-process operator. The first input corresponds to the messages received from 

Workers, while the second input comes from the Query Source. In this context, the Query 

Source can treat either as the testing source which includes queries used to evaluate the 

quality of joint probability distribution estimation or as a query source that contains user-

posed queries related to the joint probability distribution of a Bayesian Network. 

The exchanged messages between the Coordinator and Worker are represented as a triplet, 

following a specific format: 

< 𝑣𝑎𝑙𝑢𝑒, 𝑤𝑜𝑟𝑘𝑒𝑟𝑖𝑑 , 𝑡𝑦𝑝𝑒_𝑚𝑒𝑠𝑠𝑎𝑔𝑒 > 

The value field represents the content of the message, which could be a value of an 

approximate distributed counter or a frequency vector in the case of the FGM method. The 

𝑤𝑜𝑟𝑘𝑒𝑟𝑖𝑑 field is used differently depending on the direction of the message flow. For 

messages from Workers to Coordinator, it denotes the 𝑐𝑜𝑟𝑑𝑖𝑑 , while for messages from the 

Coordinator to Workers, it represents the 𝑤𝑜𝑟𝑘𝑒𝑟𝑖𝑑 indicating the intended Worker to receive 

the message. Finally, the 𝑡𝑦𝑝𝑒_𝑚𝑒𝑠𝑠𝑎𝑔𝑒 field defines the message type based on the specific 

action performed. 

Each message, in addition to the three fields, in case of the approximate distributed counters 

and are treated as individual entities, the message needs to include another field related to 

the counter that the message is referring to. The following mechanism is also used to retrieval 

of the counters during the update process. Specifically, each counter in Bayesian Network is 

unique and characterized by the following fields: 

< 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑁𝑎𝑚𝑒, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑉𝑎𝑙𝑢𝑒, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝑁𝑎𝑚𝑒, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝑉𝑎𝑙𝑢𝑒 > 

While in Naïve Bayes Classifier, each counter is uniquely characterized by the following fields: 

< 𝑖𝑛𝑑𝑒𝑥, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑉𝑎𝑙𝑢𝑒, 𝑐𝑙𝑎𝑠𝑠𝑉𝑎𝑙𝑢𝑒 > 

Where the index field denotes the position of the counter value in the input feature vector. 

In case each message contains all the previous fields, the size of the message will be 

significantly large. Instead of each counter characterized by a unique key corresponded to a 

long number. This number is generated by hashing all the fields of each counter, using an 

appropriate hash function (Figure 18). 



January 2023                            64 | P a g e  

 

 

Figure 18: Hashing 

The hashing process is not performed each time a message is sent, instead, it is carried out 

during the process of the Initialization. Each counter is converted into a unique key that will 

be used throughout the entire process. This allows us to reduce the size of each message and 

create a fast retrieval mechanism for the counters, utilizing an appropriate structure (Hash 

Map).   

Both the Worker and Coordinator components include a side-output, which serves as a logging 

mechanism. This mechanism enables us to log various important metrics related to our 

system, including throughput, communication cost at a given time, and more. 

Further details on the project structure and setup, can be found in Appendix. Additionally, the 

code for the project is available at [27]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



January 2023                            65 | P a g e  

 

Chapter 6: 

Experimental evaluation 
 

The experimental evaluation comprises a wide range of experiments covering both the first 

approach (See. Chapter 4.1) and the proposed approach (See Chapter 4.2). The first section 

validates the functionality of the proposed approach, while the second section refers to the 

system’s capability to handle large volumes of datasets. The third section provides a 

comparison between the two approaches. All the experiments are conducted using Bayesian 

Networks, with similar results observed for Naïve Bayes Classifiers. 

In the first approach, we conducted experiments using two types of counters: RANDOMIZED 

and DETERMINISTIC counters, in conjunction with the BASELINE, UNIFORM, and 

NON_UNIFORM algorithms. For the second approach, which utilizes the FGM method, we 

conducted various experiments using the BASELINE and UNIFORM algorithms. It should be 

noted that the Bayesian Network structure is predetermined, and our objective is to learn the 

parameters.  

Testing Setup 

All the experiments described in this thesis were conducted on the SoftNet Cluster of the 

SoftNet lab [28]. The SoftNet Cluster is composed of 12 Quad Core Xeon X3323 2.5GHz,8 GB 

DDR3 RAM. The version of Apache Flink version is 1.10.0 and the version of the Apache Kafka 

Connector version is 1.9.3. 

 

6.1 Datasets 
 

All the Bayesian Networks used in our experiments are real-world Bayesian Networks and are 

available in the repository [29]. Additionally, the Bayesian Networks had been extensively 

studied in prior studies. We selected Bayesian Networks from different size categories. 

Specifically, we chose the ALARM [30] as a small-size network (≤ 40 nodes), the HEPAR2 [7] 

as a medium-size network(≤ 100 nodes), and the LINK as a large-size network (≤ 1000 

nodes). Finally, all the Bayesian Networks in our experiments refer to Discrete Bayesian 

Networks. 

Table 4 provides an overview of the Bayesian Networks used in the experiments. It includes 

the number of nodes in each Bayesian Network, which corresponds to the size of the input 

feature vector. The second column indicates the number of edges, representing the number 

of conditional dependencies among the nodes in each Bayesian Network. Additionally, the 

table displays the number of parameters required to define the joint probability distribution 

of each Bayesian Network, while the last column indicates the number of counters required 

to maintenance, for estimating the parameters of each Bayesian Network. 



January 2023                            66 | P a g e  

 

Table 4: Bayesian Networks 

Training Data 

Regarding the training dataset, we generated datasets for each network from the joint 

probability distribution using the Forward Sampling method (See Chapter 2.4). The size of 

datasets for each network varied from 5𝛫 to 50𝛭. These generated datasets were used 

exclusively for learning the parameters of each Bayesian Network. 

 

Testing Data 

The testing dataset contains queries about specific events, intending to evaluate the accuracy 

of the system. Particularly, we measure the system’s ability to accurately estimate the 

probability of various events. To accomplish this, we generate 1000 events based on the joint 

probability distribution of the Bayesian Network. The probability of these events is estimated 

using the learning parameters of the trained network. All events in the testing dataset pertain 

exclusively to probability queries regarding the joint probability distribution. It is important to 

note that there are no limitations on the values of the probability events. The testing dataset 

encompasses both highly unlikely and highly likely queries, with the only requirement being 

that the assigned probabilities must be non-negative, in adherence to the basic probability 

axiom. 

 

6.2 Performance metrics 
 

Communication cost 

The illustrated communication cost represents the total number of bytes of messages. 

Encompassing both the upstream and downstream communication cost. 

Error to Ground Truth (GT) 

For each testing event, we calculate the probability using the learning parameters of the 

approximate model, which corresponds to the trained network. We then compare this 

probability to the ground truth probability event obtained using the values of the ground truth 

parameters of the network. Consequently, the metric measures the error of the ground truth 

(GT) probability, denoted as Error to GT. 

Error to EXACTMLE 

For the BASELINE, UNIFORM, and NONUNIFORM algorithms, we measure the error to 

EXACTMLE and denote it as Error to EXACTMLE. 

Dataset Number of 
nodes 

Number of 
edges 

Number of 
parameters 

Number of 
counters 

ALARM 37 46 509 983 

HEPAR II 70 123 1453 2816 

LINK 724 1125 14211 26609 



January 2023                            67 | P a g e  

 

6.3 Experimental Results 
 

For all the following experiments are reported the mean value of five independent runs. 

Furthermore, the Bayesian Networks do not appear significant differences between 𝐽𝑖, 𝐾𝑖 

among the nodes, resulting in the differences among BASELINE, UNIFORM, and NONUNIFORM 

algorithms both approaches are negligible. We focus on the differences between of two 

approaches. We set 𝑘 = 16, 𝜀 = 0.1 and 𝛿 = 0.1, unless otherwise specified. 

We present the results of four categories of experiments. The first category measures the 

communication cost while varying the number of training instances, and the second category 

examines the communication cost while varying the approximation factor ε. Last but not least, 

the third category measures the communication cost while varying the number of workers. 

Lastly, in the fourth category, we evaluate the scalability of the system. In all cases, we 

compare the two approaches themselves, and each approach with EXACT counters, that is the 

EXACTMLE. 

 

6.3.1 Communication cost related to the number of training instances 
 

The first category focuses on the communication cost while varying the number of training 

instances. The size of datasets ranges from 5𝐾 to 50𝛭 and the dataset used is the HEPAR ΙΙ.    

In this category, we compare the Error to GT between the two approaches. For the first 

approach, we measure the error for both RANDOMIZED and DETERMINISTIC counters, while 

for the second approach, we use the FGM method. The Error to GT represents the absolute 

error of the probability queries.  

As the number of training instances increases for both approaches, the error decreases. This 

is expected because, with more training instances, more information about the parameters is 

obtained, resulting in more accurate parameter estimation. Furthermore, the interquartile 

range shrinks with the increase in training instances, indicating a reduction in the variance of 

the probability query errors. Both approaches achieve good accuracy, for instance, after  

5𝛭 instances, the median error is less than 1% for each approach. The diagrams illustrating 

the error to GT of the HEPAR II network in both approaches can be found in the Appendix. 



January 2023                            68 | P a g e  

 

Figure 19:  Error to GT related to the training instances for both approaches, for the HEPAR II dataset 

 

We compare the Error to ΕΧΑCTMLE to the number of training instances for both approaches. 

In this case, the Error to ΕΧΑCTMLE represents the mean absolute error of the probability 

queries. This error can be attributed to two sources: statistical error and approximation error. 

The statistical error arises due to the number of training instances and depicts the error 

relating to the ground truth values of the parameters. The approximation error, on the other 

hand, captures the error between the learnt model and the model obtained using EXACT 

counters, which is influenced by the approximation factor ε. 

Figure 20: Error to EXACTMLE related to the number of training instances for both approaches for the 
HEPAR II dataset 

 

 



January 2023                            69 | P a g e  

 

Our objective is to control the approximation error to the EXACTMLE. We observe that for 

both approaches the error approximately remains bounded as the number of training 

instances is varied. The latter confirms the functionality of each approach. We guarantee for 

each approach combined with the BASELINE, UNIFORM, and NON_UNIFORM algorithms that 

the error is always bounded, where the error guarantees are always specified by the 

approximation factors ε, δ. For a small number of training instances (≤ 50𝐾), the error is 

negligible due to the tight bounds for each counter. The latter holds since the values of the 

counters are quite small in this case. For example, when 𝜀 = 0.1 the approximation factor for 

each counter is roughly in the order of 10−4, therefore the bounds are extremely tight for 

small values of the counters. 

The BASELINE obtains the smallest error, which corresponds to the best accuracy, closely 

followed by the UNIFORM and NON_UNIFORM algorithms. The latter holds because the 

BASELINE algorithm is accompanied by tight bounds for each counter compared to the others. 

The purpose of this experiment is to prove the functionality both of approaches and not to 

infer results among the BASELINE, UNIFORM, and NON_UNIFORM algorithms. 

Additionally, we measure the communication cost related to the number of training instances 

for both approaches. Note that the y-axis is in logarithmic scale. 

Firstly, there are no significant differences among the BASELINE, UNIFORM, and 

NON_UNIFORM algorithms. As mentioned earlier, there are no significant differences 

between 𝐽𝑖 𝑎𝑛𝑑 𝐾𝑖 among the nodes of the HEPAR II network. Generally speaking, the 

UNIFORM and NON_UNIFORM algorithm is quite close while both algorithms appear to be 

better than the BASELINE algorithm as the number of training instances increases. 

As the number of training instances increases, the difference to EXACTMLE also increases for 

both approaches. This is desirable as it proves that both approaches can handle large volumes 

of datasets sufficiently while using as little communication cost as possible. In the case of the 

first approach, both RANDOMIZED and DETERMINISTIC counters achieve up to an order of 

magnitude less communication cost of EXACTMLE. This practically means that they send 10 

times fewer messages than EXACTMLE. On the other hand, the second approach achieves up 

to two orders of magnitude less communication cost than EXACTMLE, which means that it 

sends 100 times fewer messages than EXACTMLE. 

Figure 21: Communication cost related to the number of training instances for both approaches from 
the HEPAR II dataset 

 



January 2023                            70 | P a g e  

 

The communication cost tends to increase logarithmically with the number of training 

instances. This trend is particularly evident when examining the LINK dataset. The results for 

both the LINK and ALARM datasets can be found in the Appendix. 

In Figure 22, for each approach among the BASELINE, UNIFORM, and NON_UNIFORM 

algorithms are used the algorithm which resulted in the lowest communication cost. We 

observe that the proposed approach outperforms the first approach, which utilizes 

individually approximate distributed counters (either RANDOMIZED or DETERMINISTIC), by up 

to an order of magnitude in terms of communication cost. When comparing the RANDOMIZED 

and DETERMINISTIC counters, we observe that DETERMINISTIC achieves a 50% improvement 

in communication cost (See. Chapter 4.1.1.3). 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Communication cost related to the number of training instances for both approaches from 
the HEPAR II dataset -Best results 

 

 

 

 

 

 

 

 

 

 

 



January 2023                            71 | P a g e  

 

6.3.2 Communication cost related to the approximation factor ε 
 

In this section, we compare the communication cost in relation to the approximation factor ε. 

We vary the approximation factor ε in the range of [0.02,0.12] with an increment of 0.02 and 

measure the communication cost for both approaches. The size of datasets is 

100𝐾, 500𝐾, 1𝑀, 5𝑀 respectively, using the HEPAR II dataset. The results for both 

approaches combined with the UNIFORM algorithm are presented here, while the results of 

the other algorithms can be found in Appendix. 

For both approaches and all algorithms, we observe that the communication cost does not 

closely follow the changes in the approximation factor ε. This implies that the communication 

cost is not sensitive to variations in the approximation factor ε for both approaches. In the 

first approach, with both types of counters, we initially observe a reduction in the 

communication cost by around 15% − 20% when the approximation factor ε changes from 

0.02 to 0.04. However, this reduction gradually diminishes as the approximation factor ε 

increases. On the other hand, the communication cost of the second approach remains stable 

across different values of the approximation factor ε. In other words, the approximation factor 

ε has little impact on the communication cost of the FGM method. This can be attributed to 

how we define safe functions to achieve our objective. 

Figure 23: Communication cost related to the approximation factor ε, for the HEPAR II dataset and 
UNIFORM algorithm 

 

By comparing the two approaches in terms of the impact of the approximation factor ε, we 

find that the proposed approach achieves better results. Both types of counters in the first 

approach exhibit a similar dependency on the approximation factor ε. Note that the y-axis of 

the Figure 24 is in logarithmic scale. 

 

 

 

 

 



January 2023                            72 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Communication cost related to the approximation factor ε for both approaches, for the 
HEPAR II dataset and UNIFORM algorithm 

Furthermore, we provide a diagram depicting the Error to GT in relation to approximation 

factor ε for both approaches using the UNIFORM algorithm. The results of other algorithms 

exhibit similar trends. In this case, the error denotes the mean absolute error of the probability 

queries. 

As the approximation factor ε increases, the error does not show significant changes (although 

some differences exist which are not significant). This is because the approximation factor ε 

only controls the approximation error, which is considerably smaller than the statistical error 

(up to two orders of magnitude smaller). As a result, the impact of the approximation error is 

overshadowed, leading to negligible changes in the overall error. On the other hand, we do 

observe changes in the error among different datasets. Specifically, the error decreases as the 

number of training instances increases. This is attributed to the reduction in statistical error 

as more training instances are utilized. Lastly, the accuracy achieved is quite good given the 

probabilities of the queries, the accuracy is less than 6% for both approaches. 

 

Figure 25: Error to GT related to the approximation factor ε for both approaches, for the HEPAR II 
dataset and UNIFORM algorithm 



January 2023                            73 | P a g e  

 

6.3.3 Communication cost related to the number of workers 
 

In this section, we compare the communication cost in relation to the number of sites. 

Specifically, the number of sites is varied in the range of [2,64]. The size of the dataset is 500𝐾 

and refers to the HEPAR II dataset. We present the communication cost for both approaches 

using the UNIFORM algorithm, while the results of the other algorithms can be found in 

Appendix. Note that the y-axis is in logarithmic scale. 

Upon analysis, we observe the communication cost increases sub-linearly to the number of 

sites for both approaches. The first approach, utilizing RANDOMIZED counters, demonstrates 

the most favorable dependency on the communication cost, in line with the theoretical 

results. On the other hand, both the FGM and DETERMINISTIC counters exhibit similar results 

in terms of their dependency on the number of sites.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26:  Communication cost related to the number of workers sites for both approaches, from the 
HEPAR II dataset and UNIFORM algorithm 

 
 

 

6.3.4 Scalability 
 

Until now, we measure the communication cost for different parameters of our system. In this 

section, we evaluate the performance of our system for both approaches. using two metrics: 

throughput and runtime. The throughput(events/sec) denotes the average of training 

instances that the system can handle per second, while the runtime(sec) represents the time 

between the first and last message received from the Coordinator during the training process. 



January 2023                            74 | P a g e  

 

We conduct two categories of experiments to evaluate the system’s performance using these 

metrics. In the first experiment, we measure the two metrics varying the number of sites. In 

the second experiment, we measure the two metrics varying the number of parallelism. 

Parallelism can be interpreted as the number of subtasks or the size of resources utilized by 

the system. 

In each experiment, we compare the two approaches themselves and each approach with the 

EXACTMLE. All the experiments are conducted using the HEPAR II dataset with a size of 500𝐾 

instances. We present the results using the metric of throughput, the results of runtime can 

be found in Appendix. To mention that the results of runtime are similar to the throughput 

but with a focus on reducing the runtime. 

In the first experiment, we measure both throughput(event/sec) and runtime(sec) in relation 

to the number of sites. The number of sites is varied in the range of [2,10] with step 2. Note 

that the number of sites does not include the Coordinator. 

In the first approach using both RANDOMIZED and DETERMINISTIC counters, we observe that 

the throughput does not increase proportionally to the number of sites after the number of 

sites exceeds 6. This suggests that adding more sites does not significantly improve the 

system's throughput beyond a certain point. As the number of sites increases, the 

communication cost also increases. Notable, the largest increase in the communication cost 

is observed when using a small number of sites (Figure 26), therefore we choose the number 

of sites in the range of [2,10]. 

The augmentation in the communication cost, particularly in the initial state where all the 

counters appeared to have violations, resulted in a significant increase in the volume of 

messages sent to the Coordinator. As a consequence, backpressure is generated on the sites. 

The backpressure appears only in the initial state where the counters are quite small 

accompanied by tight bounds. It is important to note that this backpressure is temporary and 

tends to diminish over time. In contrast, we observe that the throughput of the EXACTMLE 

remains relatively stable regardless of the number of sites, indicating that its communication 

cost is indeed substantial, resulting in lasting backpressure on the sites. As a result, it does not 

scale well in terms of the number of sites. 

 

 

Figure 27: Throughput(events/sec) related to the number of sites for both approaches, for the HEPAR II 
dataset 



January 2023                            75 | P a g e  

 

 

Considering the second approach, we observe that the throughput increases linearly 

according to the number of sites, indicating that there is no backpressure on the sites. As a 

result, the proposed approach achieves the ideal scaling without experiencing backpressure 

issues. The differences observed between the two approaches suggest variations in their 

communication cost. Specifically, the second approach exhibits significantly lower 

communication costs compared to the first approach. Furthermore, differences in throughput 

and runtime among the BASELINE, UNIFORM, and NON_UNIFORM algorithms can be 

attributed to variations in their communication costs, which are directly proportional to their 

differences. 

We measure the throughput and the runtime of the first approach after the initial state, where 

all the counters appeared with violations. We observe that the throughput increases 

proportional to the number of sites, while the runtime decreases proportionally to the 

number of sites for both types of counters. This confirms that the backpressure after the initial 

state begins to diminish over time, and as a result, the first approach with both types of 

counters achieves ideal scaling. 

 

Figure 28: Throughput(events/sec) related to the number of sites for the first approach for the HEPAR 
II dataset HEPAR II, after the initial state 

We present a comparison of the two approaches in terms of throughput (Figure 29). The 

chosen algorithm for each approach among the BASELINE, UNIFORM, and NON_UNIFORM 

algorithms is the one that achieves the best performance i.e., the algorithm with the highest 

throughput for each approach (while for the runtime is used the algorithm with the lowest 

runtime). For the first approach, the throughput is measured without considering an initial 

state. We observe that the proposed approach achieves higher throughput than the first 

approach, indicating differences in their communication cost are significant. Furthermore, 

both the second and the first approaches demonstrate higher throughput compared to the 

EXACTMLE, indicating substantial differences in their communication cost. 



January 2023                            76 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Throughput(events/sec) related to the number of sites for both approaches, for the HEPAR II 
dataset -Best results 

 

 

In the second experiment, we measure the throughput(event/sec) and the runtime(sec) in 

relation to the number of parallelism. Specifically, the parallelism is varied in the range of 

[2,16] with a step of 2 while the number of sites remains fixed at 16. 

Similar to the findings in the previous experiment, we observe that in the first approach, as 

the number of parallelism increases, the variations in both throughput and the runtime do not 

increase proportionally to the number of sites. 

 

 

Figure 30: Throughput(events/sec) related to the number of parallelism for both approaches for the 
HEPAR II dataset 

 

 



January 2023                            77 | P a g e  

 

This can be attributed to the fact that as the number of parallelism increases, the rate at which 

messages arrive at the Coordinator surpasses the rate at which the messages can be 

processed, resulting in backpressure on the sites. The backpressure is observed only in the 

first approach, particularly during the initial state where all the counters have tight bounds 

and violations are more common. This leads to a significant increase in the communication 

cost. However, as the system progresses beyond the initial state, the backpressure gradually 

diminishes (Figure 31), where we measure the throughput after the initial state for both types 

of counters in relation to the number of sites. 

 

Figure 31: Throughput(events/sec) related to the number of parallelism for the first approach for the 
HEPAR II dataset, after the initial state 

 

Considering the second approach, we observe that the increase in the throughput is linear in 

relation to the number of parallelism, indicating that there are no backpressure issues on the 

sites. This suggests that the proposed approach achieves ideal scaling in terms of parallelism 

(i.e., the number of resources that can be utilized by the system). 

On the other hand, the throughput of the EXACTMLE remains relatively stable to the increase 

of the number of parallelism, indicating that the rate at which the messages arrived at the 

Coordinator is substantial. This is due to the communication cost associated with the 

EXACTMLE is substantial. As a result, backpressure is consistently generated on the sites. 

Therefore, the EXACTMLE does not achieve the desired scaling to the number of resources. 

We present a comparison of the two approaches in terms of parallelism (Figure 32). Among 

the BASELINE, UNIFORM, and NON_UNIFORM algorithms, for each approach is used the 

algorithm that achieves the best performance for each approach is selected (in the runtime, 

the algorithm with the lowest runtime, respectively). The proposed approach outperforms 

both types of counters in terms of throughput, indicating its ability to effectively utilize the 

available resources and achieve optimal scaling of the system. The significant difference in 

throughput between the two approaches highlights the difference in their communication 

costs. Additionally, the throughput of both the first and second approaches are better than 

that of the EXACTMLE, which confirms their differences in communication cost. 



January 2023                            78 | P a g e  

 

 

Figure 32: Throughput(events/sec) related to the number of parallelism for both approaches for the 
HEPAR II dataset- Best results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



January 2023                            79 | P a g e  

 

6.3.5 Dummy Father 
 

In this section, we present the results of the Dummy Father (DF) method in conjunction with 

the NON_UNIFORM algorithm. The results are exclusively focused on the first approach (See 

Chapter 4.2.1). 

We measure the communication cost of the NON_UNIFORM combined with the Dummy 

Father (DF) method and then compare the results to the communication cost of the 

NON_UNIFORM algorithm, using both the RANDOMIZED and DETERMINISTIC counters of the 

first approach. The datasets are varied in the range of 5𝛫 to 50𝛭 and are related to the HEPAR 

II and ALARM datasets, respectively. Note that the y-axis is in logarithmic scale. 

 

Figure 33: Communication cost in conjunction with the Dummy Father (DF) method for HEPAR II, 
ALARM datasets 

As the number of training instances increases, the difference in communication cost begins to 

increase as well. This is because each counter is required to send fewer messages. We achieve 

a 40% reduction in the communication cost of the RANDOMIZED counters and a 50% 

reduction in communication cost for the DETERMINISTIC counters. To mention that the 

reduction in communication cost is mostly attributed to the prevention of maintaining EXACT 

counters for orphan nodes. Therefore, the differences may vary among different networks. 

Specifically, in the case of the ALARM dataset, we can prevent the maintenance of 26 EXACT 

counters, while in HEPAR II we can prevent the maintenance of 18 EXACT counters. 

 

 

 

 

 



January 2023                            80 | P a g e  

 

Chapter 7: 

Conclusions 
 

7.1 Conclusions 
 

We propose a different approach for learning parameters ensuring the continuous 

maintenance of a Bayesian Network over the continuous distributed model, using the FGM 

method. We achieve a reduction in communication cost compared to the EXACTMLE while 

ensuring error guarantees on the estimation of the probabilities queries of the joint probability 

distribution of a Bayesian Network, with the latter being confirmed from the experimental 

evaluation. Additionally, we present a comprehensive and extensive analysis of the first 

approach using both the RANDOMIZED and DETERMINISTIC counters combined with the 

BASELINE, UNIFORM, and NON_UNIFORM algorithms. Finally, we integrate both approaches 

into a distributed streaming framework like Apache Flink. 

 

7.2 Future Work 
 

Several extensions can be explored for both approaches. One interesting extension is the 

structure learning of a Bayesian Network, where the structure of the Bayesian Network is 

assumed to be known in advance, now the learning of the structure is accomplished in an 

online fashion as new data is received at the sites. Considering the second approach, another 

interesting extension is the search for “better” safe functions. This could potentially lead to a 

further reduction in communication cost by optimizing the selection of safe functions. 

Additionally, the adaptation of the Graphical Model sketches [32] could be explored to achieve 

a reduction in communication cost. Graphical sketches provide a space-efficient 

representation of the entire joint probability distribution, allowing for more efficient 

communication compared to frequency vectors, while ensuring the appropriate error 

guarantees. 

 

 

 

 

 

 

 

 



January 2023                            81 | P a g e  

 

Appendix 
 

Experimental results 

 

Communication cost related to the number of training instances 

We present the mean error to GT for both approaches. To mention that the differences among 

the BASELINE, UNIFORM, and NON_UNIFORM algorithms are not significant because the 

statistical error outweighs the approximation error. As a result, the dominant factor is the 

statistical error, and there are no differences among the algorithms. The error decreases as 

the number of training instances increases which can be attributed to the decrease in the 

statistical error. In terms of accuracy, both approaches perform quite well. For example, for 

the datasets exceeding 50𝛫 training instances, the error is less than 10% for each approach. 

The captured error is considered good when considering the probability queries. 

 

Figure 34: Mean error to GT related to the number of training instances for both approaches for the 
HEPAR II dataset 

 

 

 

 

 

 

 

 

 



January 2023                            82 | P a g e  

 

We analyze the communication cost in relation to the number of training instances for both 

approaches using the LINK and ALARM datasets. For each approach and network, among the 

BASELINE, UNIFORM, and NON_UNIFORM algorithms selected the algorithm with the best 

performance. 

 

Figure 35: Communication cost related to the number of training instances for LINK, ALARM datasets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



January 2023                            83 | P a g e  

 

Communication cost related to the approximation factor ε 

We present the communication cost in relation to the approximation factor ε, using the 

BASELINE, UNIFORM, and NON_UNIFORM algorithms for each approach. 

 

Figure 36: Communication cost related to the approximation factor ε for both approaches for the 
HEPAR II dataset 

 



January 2023                            84 | P a g e  

 

Communication cost related to the number of workers 

We present the communication cost in relation to the number of sites, using the BASELINE, 

UNIFORM, and NON_UNIFORM algorithms for each approach. 

 

Figure 37: Communication cost related to the number of sites for both approaches for the HEPAR II 
dataset 

 

 

 

Scalability 

Runtime related to the number of sites 

We present the runtime(sec) in relation to the number of sites using the BASELINE, UNIFORM, 

and NON_UNIFORM algorithms for each approach. 

 

Figure 38: Runtime(sec) related to the number of sites for both approaches for the HEPAR II dataset 



January 2023                            85 | P a g e  

 

 

 

Figure 39: Runtime(sec) related to the number of sites for the first approach for the HEPAR II dataset, 
after the initial state 

 

 

 

 

 

 

 

 

 

 

 

Figure 40: Runtime(sec) related to the number of sites for both approaches for the HEPAR II dataset - 
Best results 

 

 

 

 

 

 

 



January 2023                            86 | P a g e  

 

Runtime related to the number of parallelism 

We present the runtime(sec) in relation to the number of parallelism using the BASELINE, 

UNIFORM, and NON_UNIFORM algorithms for each approach. 

 

Figure 41: Runtime(sec) related to the number of sites for both approaches for the HEPAR II dataset 

 

 

Figure 42: Runtime(sec) related to the number of sites for the first approach for the HEPAR II dataset, 
after the initial state 

 

 

 

 

 

 

 



January 2023                            87 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 43: Runtime(sec) related to the number of sites for both approaches for the HEPAR II dataset - 
Best results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



January 2023                            88 | P a g e  

 

Project Structure 

In the following figure, the abstract structure of the project is presented. It depicts how the 

packages are organized, which will be discussed in detail below. 

 

Figure 44: Project Structure 



January 2023                            89 | P a g e  

 

As depicted, the project structure is divided into three essential categories: the DistCounters 

the FGM, and the Commons.  DistCounters represents the Approximate Distributed Counters, 

FGM represents the components specific to the second approach, and Commons represents 

the shared components used by both approaches. We present a summary of the main 

components in each category.  

DistCounters-FGM 

• worker: The package includes two components: the Worker and the WorkerFunction. 

The Worker component contains the rudimentary logic for each Worker, such as 

managing the Input Source and receiving control messages from the 

Coordinator(Feedback Source). The WorkerFunction component provides the 

necessary functionality specific to each Worker and is defined based on the selected 

approach. 

• coordinator: The package consists of two components: the Coordinator and the 

CoordinatorFunction. The Coordinator component handles the basic logic used by the 

Coordinator, which includes managing messages from the Workers and handling the 

probability queries (Query Source). The CoordinatorFunction component provides all 

the functionality for the Coordinator and is defined based on the selected approach. 

• state: The package consists of three components, but in this case, there is a 

hierarchical relation among them: the State, the WorkerState, and the 

CoordinatorState. The State component contains the shared elements used by both 

sides (Worker-Coordinator). It serves as a base component inherited by both 

WorkerState and CoordinatorState. The State component includes elements related 

to the setup of the entire pipeline of the system and will be discussed in detail in the 

following section. The WorkerState component includes elements from the State 

component and the additional state for each Worker. For example, the approximate 

distributed counter regarding the first approach while the frequency vectors consider 

the FGM protocol. The CoordinatorState follows a similar pattern, inheriting elements 

from the State component and maintaining a state specific to the Coordinator based 

on the selected approach (approximate distributed counters or frequency vectors).  

• datatypes: The package contains the basic datatypes utilized by both the WorkerState 

and the CoordinatorState. In the first approach, the fundamental element utilized by 

the sites is the Counter, which represents an approximated distributed counter. In the 

second approach, the key element is the Vector, which defines a frequency vector.  As 

mentioned earlier, the FGM method constitutes an independent monitoring method. 

Thus, we also implement another essential element called sketches. Particularly, it 

includes two well-known and basic sketches: the Fast-AGMS sketch [33] and the 

CountMin sketch [34]. These sketches can be used for monitoring in conjunction with 

the appropriate safe function. 

• safezone: This package is specifically related to the FGM method and focuses on safe 

functions. It provides the necessary functionality to define and utilize the appropriate 

safe function based on the monitoring requirements. The package ensures 

compatibility with the specific datatype provided by the system. 

• job: This package encompasses the entire inferred pipeline by combining all the 

components. The first pipeline refers to the one that utilizes a Kafka topic as a 

feedback loop, while the second pipeline refers to the one that utilizes the Iterative 



January 2023                            90 | P a g e  

 

Stream operator provided by Apache Flink. These pipelines orchestrate the flow of 

data and processing within the system.  

 

Commons 

• bayesianNetworks: This package serves as a repository for all the available Bayesian 

Networks that are integrated into the system, where each network is accompanied by 

the schema of the dataset. The schema defines the format of the input feature vector 

for a Bayesian Network. Therefore, for the insertion of a new Bayesian Network or 

Naïve Bayes Classifier into the system, it is necessary to define both the 

bayesiaNetwork itself and its corresponding datasetSchema. 

• config: This package consists of three individual components: the InternalConfig, the 

CBNConfig, and FGMConfig. The InternalConfig contains shared parameters by both 

approaches (DistCounter - FGM) required for the setup of the entire pipeline. The 

CBNConfig includes parameters specific to the DistCounter, while the FGMConfig 

includes the parameters related to the FGM protocol. These parameters are further 

discussed in detail in the Project Setup section. 

• datatypes: This package comprises the basic shared datatypes utilized by both 

approaches. Specifically, it includes the format of the Input Source and the format of 

messages (Message) exchanged between the Coordinator and the Workers and vice 

versa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



January 2023                            91 | P a g e  

 

Project Setup 

This section represents the description of the parameters that need to be defined by the user 

to run an example of our system. 

 

Distributed Counters Configuration 

Parameter: typeCounter 
Description: This parameter defines the type of counter to be used as a basic component 
during the process. There are four available types of counters: RANDOMIZED, DETERMINISTIC, 
CONTINUOUS, and EXACT counter. 
 

 

FGM Configuration 

Parameter: typeState 
Description: This parameter defines the type of state to be used by both sides(workers-
coordinator) during the process. There are three available types of state: VECTOR, Fast-AGMS, 
and COUNT_MIN sketches. 
     
Parameter: enableRebalancing 
Description: This parameter enables/disables the rebalancing mechanism of the FGM 
protocol. Moreover, it works in conjunction with the value of lambda. The default value of 
lambda is 2. 
 
Parameter: width, depth 
Description: These parameters are only applicable if the type of state chosen is one of the 
available types of sketches. They determine the width and the depth of the sketch to be used 
as the state of the Workers and Coordinator. 
 

 

Common Configuration 

Parameter: typeNetwork 
Description: This parameter defines the type of network to be used during the process. There 
are two available types of networks: BAYESIAN, NAÏVE 
 
Parameter: BNSchema 
Description: This parameter defines the specific network to be used during the process. There 
are built-in network options available. Here are some of the available network options: SACHS, 
ALARM, HEPAR2, LINK, MUNIN, and EARTHQUAKE. 
 
Parameter: datasetSchema 
Description: This parameter defines the schema of the dataset to be used during the process. 
Similar to the network schema, there are built-in dataset schema options available. Here are 
some of the available schemas options: SACHS, ALARM, HEPAR2, LINK, MUNIN, and 
EARTHQUAKE. 
 



January 2023                            92 | P a g e  

 

Parameter: errorSetup 
Description: This parameter defines the algorithm used to adjust the error between the 
available counters. There are three available options: the BASELINE, UNIFORM, and 
NON_UNIFORM algorithms. 
 
Parameter: workers 
Description: This parameter defines the number of workers/sites (not including the 
Coordinator) to be used during the process. 
 
Parameter: parallelism 
Description: This parameter defines the parallelism i.e. the number of subtasks to be used by 
each pipeline operator during the process. 
 
Parameter: eps 
Description: This parameter specifies the epsilon value that defines the accuracy of the 
estimated joint probability distribution (user-defined error guarantees).  
 
Parameter: delta 
Description: This parameter specifies the delta value that defines the likelihood of the 
estimated joint probability distribution (user-defined error guarantees).  
 
Parameter: inputTopic 
Description: This parameter defines the Kafka topic to be used as the input for the Workers. 
 
Parameter: feedbackTopic 
Description: This parameter defines the Kafka topic to be used as a feedback loop between 
the Workers and the Coordinator. 
 
Below are two complete examples demonstrating the application of the aforementioned 
parameters.  The first example corresponds to the DistCounters method, while the second 
example corresponds to the FGM method. 

In both examples, the dataset is the HEPAR2 using sourceHEPAR2 as inputTopic 
and fdHEPAR2 as feedbackTopic. Furthermore, the number of workers is equivalent 
to 8 while the number of parallelism is equal to 4. Finally, the accuracy is set to 0.1 and the 
likelihood of the estimated joint probability distribution is 90%(error guarantees). 

--inputTopic sourceHEPAR2 --feedbackTopic feedbackHEPAR2 --workers 8 --parallelism 4 
--eps 0.1 --delta 0.25 --errorSetup UNIFORM --typeCounter RANDOMIZED --queriesSize 1000 

--bn HEPAR2 --datasetSchema HEPAR2 
 

The only change for the previous example to be applied to the second approach is the 

typeCounter to be replaced by the typeState, which is accompanied by the appropriate system 

type provided (for example, VECTOR). 

 
 

 



January 2023                            93 | P a g e  

 

Bibliography 
[1] D. Koller and N. Friedman, 

Probabilistic graphical models: principles 

and techniques. Cambridge, MIT Press, 

2009. 

[2] J. Joyce, “Bayes’ Theorem,” Stanf. 

Encycl. Philos., Jun. 2003, [Online]. 

Available:https://plato.stanford.edu/archi

ves/spr2019/entries/bayes-theorem/ 

[3] J. Pearl, Probabilistic Reasoning in 

Intelligent Systems: Networks of Plausible 

Inference. Morgan Kaufmann, 1988. 

[4] O. Pourret, P. Naïm, and B. Marcot, 

Bayesian Networks: A Practical Guide to 

Applications. John Wiley & Sons, 2008. 

[5] O. J. Mengshoel, A. Darwiche, and 

S. Uckun, “Sensor Validation using 

Bayesian Networks,” Feb. 2008. 

[6] S. Andreassen et al., “MUNIN: an 

expert EMG assistant,” in Computer-Aided 

Electromyography and Expert Systems, J. 

E. Desmedt, Ed. Pergamon Press, 1989, pp. 

255–277. 

[7] A. Onisko, M. J. Druzdzel, and H. 

Wasyluk, “A Bayesian Network Model for 

Diagnosis of Liver Disorders,” Mar. 2003. 

[8] P. Xie, J. H. Li, X. Ou, P. Liu, and R. 

Levy, “Using Bayesian networks for cyber 

security analysis,” in 2010 IEEE/IFIP 

International Conference on Dependable 

Systems & Networks (DSN), Jun. 2010, pp. 

211–220. 

[9] J. Dougherty, R. Kohavi, and M. 

Sahami, “Supervised and Unsupervised 

Discretization of Continuous Features,” 

1995, pp. 194–202. 

[10] P. Langley, W. Iba, and, and K. 

Thompson, “An analysis of Bayesian 

classifiers,” in Proceedings of the tenth 

national conference on Artificial 

Intelligence, San Jose, California, Apr. 

1992, pp. 223–228. 

[11] M. Ghazanfar and A. Prügel-

Bennett, “An Improved Switching Hybrid 

Recommender System Using Naive Bayes 

Classifier and Collaborative Filtering,” Apr. 

2010. 

[12] N. Friedman, D. Geiger, and M. 

Goldszmidt, “Bayesian Network 

Classifiers,” Mach. Learn., vol. 29, no. 2, 

pp. 131–163, Nov. 1997. 

[13] T. J. Watson, “An empirical study 

of the naive Bayes classifier,” 2001. 

[14] M. Henrion, “Propagating 

Uncertainty in Bayesian Networks by 

Probabilistic Logic Sampling,” in Machine 

Intelligence and Pattern Recognition, vol. 

5, J. F. Lemmer and L. N. Kanal, Eds. North-

Holland, 1988, pp. 149–163. 

[15] R. Fung and K.-C. Chang, 

“Weighing and Integrating Evidence for 

Stochastic Simulation in Bayesian 

Networks,” 1990, vol. 10, pp. 209–219. 

[16] G. Cormode, “The continuous 

distributed monitoring model,” ACM 

SIGMOD Rec., vol. 42, no. 1, pp. 5–14, May 

2013. 

[17] K. Yi and Q. Zhang, “Optimal 

Tracking of Distributed Heavy Hitters and 

Quantiles.” arXiv, Nov. 30, 2008. 

[18] Y. Zhang, S. Tirthapura, and G. 

Cormode, “Learning Graphical Models 

from a Distributed Stream,” in 2018 IEEE 

34th International Conference on Data 

Engineering (ICDE), Paris, Apr. 2018, pp. 

725–736. 

[19] Z. Huang, K. Yi, and Q. Zhang, 

“Randomized Algorithms for Tracking 

Distributed Count, Frequencies, and 

Ranks.” arXiv, Dec. 



January 2023                            94 | P a g e  

 

02,2011.Available:http://arxiv.org/abs/11

08.3413 

[20] G. Cormode, S. Muthukrishnan, 

and K. Yi, “Algorithms for distributed 

functional monitoring,” ACM Trans. 

Algorithms, vol. 7, no. 2, pp. 1–20, Mar. 

2011. 

[21] V. Samoladas and M. Garofalakis, 

“Functional Geometric Monitoring for 

Distributed Streams,” 2019, p. 12. 

[22] I. Sharfman, A. Schuster, and D. 

Keren, “A geometric approach to 

monitoring threshold functions over 

distributed data streams,” ACM Trans. 

Database Syst., vol. 32, no. 4, p. 23, Nov. 

2007. 

[23] “Apache Flink.” 

https://flink.apache.org/ (accessed Feb. 

11, 2023). 

[24] “Apache Spark.” 

https://spark.apache.org/ (accessed Feb. 

10, 2023). 

[25] A. Lazerson, I. Sharfman, D. Keren, 

A. Schuster, M. Garofalakis, and V. 

Samoladas, “Monitoring distributed 

streams using convex decompositions,” 

Proc. VLDB Endow., vol. 8, no. 5, pp. 545–

556, Jan. 2015. 

[26] “Apache Kafka.” 

https://kafka.apache.org/ (accessed Feb. 

11, 2023). 

[27] “Nikolaos Tzimos.” 

https://github.com/NikolasTz (accessed 

Feb. 11, 2023). 

[28] “Software Technology and 

Network Applications Laboratory | 

SoftNet.” https://www.softnet.tuc.gr/en/ 

(accessed Feb. 11, 2023). 

[29] M. Scutari, “bnlearn – Bayesian 

Network Repository.” 

https://www.bnlearn.com/bnrepository/ 

(accessed Feb. 11, 2023). 

[30] I. A. Beinlich, H. J. Suermondt, R. 

M. Chavez, and G. F. Cooper, “The ALARM 

Monitoring System: A Case Study with two 

Probabilistic Inference Techniques for 

Belief Networks,” in AIME 89, Berlin, 

Heidelberg, 1989, pp. 247–256. 

[31] C. S. Jensen and A. Kong, “Blocking 

Gibbs Sampling for Linkage Analysis in 

Large Pedigrees with Many Loops,” Am. J. 

Hum. Genet., vol. 65, no. 3, pp. 885–901, 

Sep. 1999. 

[32] B. Kveton, H. Bui, M. 

Ghavamzadeh, G. Theocharous, S. 

Muthukrishnan, and S. Sun, “Graphical 

Model Sketch.” arXiv, Jul. 18, 2016. 

[33] G. Cormode and M. Garofalakis, 

“Sketching Streams Through the Net: 

Distributed Approximate Query Tracking,” 

presented at the Very Large Data Bases 

Conference, Aug. 2005. 

[34] G. Cormode and S. 

Muthukrishnan, “An Improved Data 

Stream Summary: The Count-Min Sketch 

and Its Applications,” Berlin, Heidelberg, 

2004, vol. 2976, pp. 29–38. 

 


